int_(-1)^1 x^2/(sqrt(x^2+1)+x+1)*dx∫1−1x2√x2+1+x+1⋅dx
After using x=tanyx=tany and dx=(secy)^2*dydx=(secy)2⋅dy transforms, this integral became
int_(-pi/4)^(pi/4) (tany)^2/(secy+tany+1)*(secy)^2*dy∫π4−π4(tany)2secy+tany+1⋅(secy)2⋅dy
=int_(-pi/4)^(pi/4) ((tany)^2*(tany+1-secy)*(secy)^2*dy)/((tany+1)^2-(secy)^2)∫π4−π4(tany)2⋅(tany+1−secy)⋅(secy)2⋅dy(tany+1)2−(secy)2
=int_(-pi/4)^(pi/4) ((tany)^2*(tany+1-secy)*(secy)^2*dy)/((tany)^2+1+2tany-(secy)^2)∫π4−π4(tany)2⋅(tany+1−secy)⋅(secy)2⋅dy(tany)2+1+2tany−(secy)2
=int_(-pi/4)^(pi/4) ((tany)^2*(tany+1-secy)*(secy)^2*dy)/((secy)^2+2tany-(secy)^2)∫π4−π4(tany)2⋅(tany+1−secy)⋅(secy)2⋅dy(secy)2+2tany−(secy)2
=int_(-pi/4)^(pi/4) ((tany)^2*(tany+1-secy)*(secy)^2*dy)/(2tany)∫π4−π4(tany)2⋅(tany+1−secy)⋅(secy)2⋅dy2tany
=1/2int_(-pi/4)^(pi/4) tany*(tany+1-secy)*(secy)^2*dy12∫π4−π4tany⋅(tany+1−secy)⋅(secy)2⋅dy
=1/2int_(-pi/4)^(pi/4) (tany)^2*(secy)^2*dy12∫π4−π4(tany)2⋅(secy)2⋅dy+1/2int_(-pi/4)^(pi/4) (tany)*(secy)^2*dy12∫π4−π4(tany)⋅(secy)2⋅dy-1/2int_(-pi/4)^(pi/4) (secy)^3*tany*dy12∫π4−π4(secy)3⋅tany⋅dy
=[1/6(tany)^3+1/4(tany)^2-1/6(secy)^3]_(-pi/4)^(pi/4)[16(tany)3+14(tany)2−16(secy)3]π4−π4
=1/313