#int_(-1)^1 x^2/(sqrt(x^2+1)+x+1)*dx#
After using #x=tany# and #dx=(secy)^2*dy# transforms, this integral became
#int_(-pi/4)^(pi/4) (tany)^2/(secy+tany+1)*(secy)^2*dy#
=#int_(-pi/4)^(pi/4) ((tany)^2*(tany+1-secy)*(secy)^2*dy)/((tany+1)^2-(secy)^2)#
=#int_(-pi/4)^(pi/4) ((tany)^2*(tany+1-secy)*(secy)^2*dy)/((tany)^2+1+2tany-(secy)^2)#
=#int_(-pi/4)^(pi/4) ((tany)^2*(tany+1-secy)*(secy)^2*dy)/((secy)^2+2tany-(secy)^2)#
=#int_(-pi/4)^(pi/4) ((tany)^2*(tany+1-secy)*(secy)^2*dy)/(2tany)#
=#1/2int_(-pi/4)^(pi/4) tany*(tany+1-secy)*(secy)^2*dy#
=#1/2int_(-pi/4)^(pi/4) (tany)^2*(secy)^2*dy#+#1/2int_(-pi/4)^(pi/4) (tany)*(secy)^2*dy#-#1/2int_(-pi/4)^(pi/4) (secy)^3*tany*dy#
=#[1/6(tany)^3+1/4(tany)^2-1/6(secy)^3]_(-pi/4)^(pi/4)#
=#1/3#