int_(-1)^1x^2/(sqrt(x^2+1)+x+1)dx11x2x2+1+x+1dx = ?

Find int_(-1)^1x^2/(sqrt(x^2+1)+x+1)dx11x2x2+1+x+1dx

2 Answers
Apr 3, 2018

int_(-1)^1 x^2/(sqrt(x^2+1)+x+1)*dx=1/311x2x2+1+x+1dx=13

Explanation:

int_(-1)^1 x^2/(sqrt(x^2+1)+x+1)*dx11x2x2+1+x+1dx

=int_(-1)^1 (x^2*(x+1-sqrt(x^2+1))*dx)/((x+1)^2-(x^2+1))11x2(x+1x2+1)dx(x+1)2(x2+1)

=int_(-1)^1 (x^2*(x+1-sqrt(x^2+1))*dx)/(2x)11x2(x+1x2+1)dx2x

=1/2int_(-1)^1 x*(x+1-sqrt(x^2+1))*dx1211x(x+1x2+1)dx

=1/2int_(-1)^1 (x^2+x-xsqrt(x^2+1))*dx1211(x2+xxx2+1)dx

=[1/6x^3+1/4x^2-1/6(x^2+1)^(3/2)]_(-1)^1[16x3+14x216(x2+1)32]11

=1/313

Apr 3, 2018

int_(-1)^1 x^2/(sqrt(x^2+1)+x+1)*dx=1/311x2x2+1+x+1dx=13

Explanation:

int_(-1)^1 x^2/(sqrt(x^2+1)+x+1)*dx11x2x2+1+x+1dx

After using x=tanyx=tany and dx=(secy)^2*dydx=(secy)2dy transforms, this integral became

int_(-pi/4)^(pi/4) (tany)^2/(secy+tany+1)*(secy)^2*dyπ4π4(tany)2secy+tany+1(secy)2dy

=int_(-pi/4)^(pi/4) ((tany)^2*(tany+1-secy)*(secy)^2*dy)/((tany+1)^2-(secy)^2)π4π4(tany)2(tany+1secy)(secy)2dy(tany+1)2(secy)2

=int_(-pi/4)^(pi/4) ((tany)^2*(tany+1-secy)*(secy)^2*dy)/((tany)^2+1+2tany-(secy)^2)π4π4(tany)2(tany+1secy)(secy)2dy(tany)2+1+2tany(secy)2

=int_(-pi/4)^(pi/4) ((tany)^2*(tany+1-secy)*(secy)^2*dy)/((secy)^2+2tany-(secy)^2)π4π4(tany)2(tany+1secy)(secy)2dy(secy)2+2tany(secy)2

=int_(-pi/4)^(pi/4) ((tany)^2*(tany+1-secy)*(secy)^2*dy)/(2tany)π4π4(tany)2(tany+1secy)(secy)2dy2tany

=1/2int_(-pi/4)^(pi/4) tany*(tany+1-secy)*(secy)^2*dy12π4π4tany(tany+1secy)(secy)2dy

=1/2int_(-pi/4)^(pi/4) (tany)^2*(secy)^2*dy12π4π4(tany)2(secy)2dy+1/2int_(-pi/4)^(pi/4) (tany)*(secy)^2*dy12π4π4(tany)(secy)2dy-1/2int_(-pi/4)^(pi/4) (secy)^3*tany*dy12π4π4(secy)3tanydy

=[1/6(tany)^3+1/4(tany)^2-1/6(secy)^3]_(-pi/4)^(pi/4)[16(tany)3+14(tany)216(secy)3]π4π4

=1/313