int 1/(3+5sinx+3cosx)dx?

1 Answer
Jun 18, 2018

I=1/5ln|5tan(x/2)+3|+c

Explanation:

Here,

I=int1/(3+5sinx+3cosx)dx

Subst. tan(x/2)=t=>sec^2(x/2)*1/2dx=dt

=>(1+tan^2(x/2))dx=2dt=>dx=2/(1+t^2)dt

So,

I=int1/(3+5((2t)/(1+t^2))+3((1-t^2)/(1+t^2)))xx2/(1+t^2)dt

=int2/(3+3t^2+10t++3-3t^2)dt

=int2/(10t+6)dt

=int1/(5t+3)dt

=1/5ln|5t+3|+c

Subst. back , t=tan(x/2)

I=1/5ln|5tan(x/2)+3|+c