#int(1+cos(2x))/(sin(2x))dx=?

enter image source here

1 Answer
Apr 14, 2018

The answer is option (B)

Explanation:

We need

(cotx)=ln|sinx|+C

cscx=ln(|cscx+cotx|)+C

Let u=2x, , du=2dx

The integral is

I=(1+cos2x)dxsin2x=12(1+cosu)dusinu

=12(cotu+cscu)du

=12(ln(sinu))12ln(cscu+cotu)

=12ln(sinu)12ln(1+cosusinu)

=12ln(sin2x)12ln(1+cos2x)12ln(sin2x)+C

=12ln(1+2cos2(2x)1)

=122lncos(2x)+C

=ln(|cos2x|)+C

The answer is option (B)