int (1+x^2)/(1+7x^2+x^4)dx?

1 Answer
Jun 6, 2017

1/3arc tan{(x^2-1)/(3x)}+C.

Explanation:

Suppose that, I=int(1+x^2)/(1+7x^2+x^4)dx.

:. I=int{x^2(1/x^2+1)}/{x^2(1/x^2+7+x^2)}dx.

=int(1+1/x^2)/(x^2+1/x^2+7)dx

We subst. u=x-1/x rArr du=(1-(-1/x^2))dx=(1+1/x^2)dx.

Also, x^2+1/x^2+7=(x-1/x)^2+9=u^2+9.

Therefore, I=int1/(u^2+3^2)du,

=1/3arc tan(u/3)

rArr I=1/3arc tan{(x-1/x)/3}=1/3arc tan{(x^2-1)/(3x)}+C.

Enjoy Maths.!