#int_(pi/4)^(pi/2)(-e^(cotx))/(sin^2x)dx=#?

I used u-sub for this one, and I got #1/2-1/2e^2#. However, the correct answer is #1-e#.

Is my answer wrong or I need to simplify it? If so, how?

Thank you!

1 Answer
Apr 10, 2018

#int_(pi/4)^(pi/2)(-e^(cotx))/(sin^2x)dx=1-e#

Explanation:

For #int_(pi/4)^(pi/2)(-e^(cotx))/(sin^2x)dx#, let #u=cotx#

then #du=-csc^2xdx# and upper and lower limits are #0# and #1# respectively. And

#int_(pi/4)^(pi/2)(-e^(cotx))/(sin^2x)dx#

= #int_1^0e^udu#

= #[e^u]_1^0#

= #1-e#