int_(pi/4)^(pi/2)(-e^(cotx))/(sin^2x)dx=π2π4ecotxsin2xdx=?

I used u-sub for this one, and I got 1/2-1/2e^21212e2. However, the correct answer is 1-e1e.

Is my answer wrong or I need to simplify it? If so, how?

Thank you!

1 Answer
Apr 10, 2018

int_(pi/4)^(pi/2)(-e^(cotx))/(sin^2x)dx=1-eπ2π4ecotxsin2xdx=1e

Explanation:

For int_(pi/4)^(pi/2)(-e^(cotx))/(sin^2x)dxπ2π4ecotxsin2xdx, let u=cotxu=cotx

then du=-csc^2xdxdu=csc2xdx and upper and lower limits are 00 and 11 respectively. And

int_(pi/4)^(pi/2)(-e^(cotx))/(sin^2x)dxπ2π4ecotxsin2xdx

= int_1^0e^udu01eudu

= [e^u]_1^0[eu]01

= 1-e1e