Let, I=intsqrt((a+x)/(a-x)) dx.I=∫√a+xa−xdx.
Rationalising, we have,
I=intsqrt((a+x)/(a-x))xx sqrt((a+x)/(a+x)) dxI=∫√a+xa−x×√a+xa+xdx
=int(a+x)/sqrt(a^2-x^2) dx=∫a+x√a2−x2dx
=aint1/sqrt(a^2-x^2) dx -1/2int(-2x)/sqrt(a^2-x^2) dx=a∫1√a2−x2dx−12∫−2x√a2−x2dx
=a*arc sin(x/a)-1/2int{d/dx(a^2-x^2)*(a^2-x^2)^(-1/2)} dx=a⋅arcsin(xa)−12∫{ddx(a2−x2)⋅(a2−x2)−12}dx
=a*arc sin(x/a)-1/2(a^2-x^2)^(-1/2+1)/(-1/2+1)=a⋅arcsin(xa)−12(a2−x2)−12+1−12+1
=a*arc sin(x/a)-(a^2-x^2)^(1/2)=a⋅arcsin(xa)−(a2−x2)12
rArr I=a*arc sin(x/a)-sqrt(a^2-x^2)+C.⇒I=a⋅arcsin(xa)−√a2−x2+C.
Note that, the later integral has been derived using the following
useful Result
Result : int[f(x)]^n*f'(x)dx=[f(x)]^(n+1)/(n+1)+c, n!=-1.
Enjoy Maths.!