#int (x^2-1)/(x^4+x^2+1) dx#?

2 Answers
Mar 25, 2018

#1/2Ln((x^2-x+1)/(x^2+x+1))+C#

Explanation:

#int (x^2-1)/(x^4+x^2+1)*dx#

=#int (1-1/x^2)/(x^2+1+1/x^2)*dx#

=#int ((1-1/x^2)*dx)/((x+1/x)^2-1)#

After using #y=x+1/x# and #dy=(1-1/x^2)*dx# transforms, this integral became

#int dy/(y^2-1)#

=#1/2int (2dy)/((y+1)*(y-1))#

=#1/2int dy/(y-1)-1/2int dy/(y+1)#

=#1/2Ln(y-1)-1/2Ln(y+1)+C#

=#1/2Ln((y-1)/(y+1))+C#

=#1/2Ln((x+1/x-1)/(x+1/x+1))+C#

=#1/2Ln((x^2-x+1)/(x^2+x+1))+C#

Mar 25, 2018

#int (x^2-1)/(x^4+x^2+1) dx = 1/2 ln abs(x^2-x+1)-1/2ln abs(x^2+x+1) + C#

Explanation:

Note that:

#x^4+x^2+1 = (x^2-x+1)(x^2+x+1)#

We find:

#(x^2-1)/(x^4+x^2+1) = (x-1/2)/(x^2-x+1)-(x+1/2)/(x^2+x+1)#

#color(white)((x^2-1)/(x^4+x^2+1)) = 1/2((2x-1)/(x^2-x+1))-1/2((2x+1)/(x^2+x+1))#

#color(white)((x^2-1)/(x^4+x^2+1)) = 1/2((d/(dx)(x^2-x+1))/(x^2-x+1))-1/2((d/(dx)(x^2+x+1))/(x^2+x+1))#

So:

#int (x^2-1)/(x^4+x^2+1) dx = int 1/2((2x-1)/(x^2-x+1))-1/2((2x+1)/(x^2+x+1)) dx#

#color(white)(int (x^2-1)/(x^4+x^2+1) dx) = 1/2 ln abs(x^2-x+1)-1/2ln abs(x^2+x+1) + C#