#int (x^2-1)/(x^4+x^2+1) dx#?
2 Answers
Explanation:
=
=
After using
=
=
=
=
=
=
Explanation:
Note that:
#x^4+x^2+1 = (x^2-x+1)(x^2+x+1)#
We find:
#(x^2-1)/(x^4+x^2+1) = (x-1/2)/(x^2-x+1)-(x+1/2)/(x^2+x+1)#
#color(white)((x^2-1)/(x^4+x^2+1)) = 1/2((2x-1)/(x^2-x+1))-1/2((2x+1)/(x^2+x+1))#
#color(white)((x^2-1)/(x^4+x^2+1)) = 1/2((d/(dx)(x^2-x+1))/(x^2-x+1))-1/2((d/(dx)(x^2+x+1))/(x^2+x+1))#
So:
#int (x^2-1)/(x^4+x^2+1) dx = int 1/2((2x-1)/(x^2-x+1))-1/2((2x+1)/(x^2+x+1)) dx#
#color(white)(int (x^2-1)/(x^4+x^2+1) dx) = 1/2 ln abs(x^2-x+1)-1/2ln abs(x^2+x+1) + C#