int (6x-1)/sqrt(x^2+3x+8)*dx∫6x−1√x2+3x+8⋅dx
=int (12x-2)/sqrt(4x^2+12x+32)*dx∫12x−2√4x2+12x+32⋅dx
=int (12x-2)/sqrt((2x+3)^2+23)*dx∫12x−2√(2x+3)2+23⋅dx
=int (12x+18-20)/sqrt((2x+3)^2+23)*dx∫12x+18−20√(2x+3)2+23⋅dx
=3/2*int (8x+12)/sqrt((2x+3)^2+23)*dx32⋅∫8x+12√(2x+3)2+23⋅dx-int 20/sqrt((2x+3)^2+23)*dx∫20√(2x+3)2+23⋅dx
A=3/2*int (8x+12)/sqrt((2x+3)^2+23)*dxA=32⋅∫8x+12√(2x+3)2+23⋅dx
After using y=4x^2+12x+32y=4x2+12x+32 and dy=(8x+12)*dxdy=(8x+12)⋅dx transforms, AA becomes
A=3/2*int dy/sqrtyA=32⋅∫dy√y
=3sqrty3√y
=3sqrt(4x^2+12x+32)3√4x2+12x+32
=6sqrt(x^2+3x+8)6√x2+3x+8
B=int 20/sqrt((2x+3)^2+23)*dxB=∫20√(2x+3)2+23⋅dx
=10int 2/sqrt((2x+3)^2+23)*dx10∫2√(2x+3)2+23⋅dx
After using 2x+3=sqrt23*tanz2x+3=√23⋅tanz and 2dx=sqrt23*(secz)^2*dz2dx=√23⋅(secz)2⋅dz transforms, BB becomes
B=int (10sqrt23*(secz)^2)/(23secz)*dzB=∫10√23⋅(secz)223secz⋅dz
=(10sqrt23)/23int secz*dz10√2323∫secz⋅dz
=(10sqrt23)/23int (secz*(secz+tanz)*dz)/(secz+tanz)10√2323∫secz⋅(secz+tanz)⋅dzsecz+tanz
=(10sqrt23)/23ln(secz+tanz)-C110√2323ln(secz+tanz)−C1
After using 2x+3=sqrt23*tanz2x+3=√23⋅tanz, tanz=(2x+3)/sqrt23 and tanz=2x+3√23andsecz=sqrt(4x^2+12x+32)/sqrt23√4x2+12x+32√23 inverse transforms,
B=(10sqrt23)/23ln(sqrt(4x^2+12x+32)+2x+3)-CB=10√2323ln(√4x2+12x+32+2x+3)−C
Thus,
int (6x-1)/sqrt(x^2+3x+8)*dx∫6x−1√x2+3x+8⋅dx
=A-BA−B
=6sqrt(x^2+3x+8)6√x2+3x+8-(10sqrt23)/23ln(sqrt(4x^2+12x+32)+2x+3)+C10√2323ln(√4x2+12x+32+2x+3)+C
Note: C=C1+Ln(sqrt23)C=C1+ln(√23)