Integral of (6x-1)dx/sqrt(x^2+3x+8) ?

1 Answer

6sqrt(x^2+3x+8)6x2+3x+8-(10sqrt23)/23ln(sqrt(4x^2+12x+32)+2x+3)+C102323ln(4x2+12x+32+2x+3)+C

Explanation:

int (6x-1)/sqrt(x^2+3x+8)*dx6x1x2+3x+8dx

=int (12x-2)/sqrt(4x^2+12x+32)*dx12x24x2+12x+32dx

=int (12x-2)/sqrt((2x+3)^2+23)*dx12x2(2x+3)2+23dx

=int (12x+18-20)/sqrt((2x+3)^2+23)*dx12x+1820(2x+3)2+23dx

=3/2*int (8x+12)/sqrt((2x+3)^2+23)*dx328x+12(2x+3)2+23dx-int 20/sqrt((2x+3)^2+23)*dx20(2x+3)2+23dx

A=3/2*int (8x+12)/sqrt((2x+3)^2+23)*dxA=328x+12(2x+3)2+23dx

After using y=4x^2+12x+32y=4x2+12x+32 and dy=(8x+12)*dxdy=(8x+12)dx transforms, AA becomes

A=3/2*int dy/sqrtyA=32dyy

=3sqrty3y

=3sqrt(4x^2+12x+32)34x2+12x+32

=6sqrt(x^2+3x+8)6x2+3x+8

B=int 20/sqrt((2x+3)^2+23)*dxB=20(2x+3)2+23dx

=10int 2/sqrt((2x+3)^2+23)*dx102(2x+3)2+23dx

After using 2x+3=sqrt23*tanz2x+3=23tanz and 2dx=sqrt23*(secz)^2*dz2dx=23(secz)2dz transforms, BB becomes

B=int (10sqrt23*(secz)^2)/(23secz)*dzB=1023(secz)223seczdz

=(10sqrt23)/23int secz*dz102323seczdz

=(10sqrt23)/23int (secz*(secz+tanz)*dz)/(secz+tanz)102323secz(secz+tanz)dzsecz+tanz

=(10sqrt23)/23ln(secz+tanz)-C1102323ln(secz+tanz)C1

After using 2x+3=sqrt23*tanz2x+3=23tanz, tanz=(2x+3)/sqrt23 and tanz=2x+323andsecz=sqrt(4x^2+12x+32)/sqrt234x2+12x+3223 inverse transforms,

B=(10sqrt23)/23ln(sqrt(4x^2+12x+32)+2x+3)-CB=102323ln(4x2+12x+32+2x+3)C

Thus,

int (6x-1)/sqrt(x^2+3x+8)*dx6x1x2+3x+8dx

=A-BAB

=6sqrt(x^2+3x+8)6x2+3x+8-(10sqrt23)/23ln(sqrt(4x^2+12x+32)+2x+3)+C102323ln(4x2+12x+32+2x+3)+C

Note: C=C1+Ln(sqrt23)C=C1+ln(23)