Integrate 1/(a+bcotx)?

2 Answers
Sep 25, 2017

See below.

Explanation:

1) I converted this integral in terms of tanx

2) I used u=tanx and du=[(tanx)^2+1]*dx for converting integrand into fraction in terms of u

3) I used basic fractions method.

4) I rewrote u=tanx for finding solution.

int dx/(a+b*cotx)

int (tanx*dx)/(a*tanx+b)

int (tanx)*([(tanx)^2+1]*dx)/[(a*tanx+b)*[(tanx)^2+1]]

After using u=tanx and du=[(tanx)^2+1]*dx transforms, this integral became,

int (u*du)/[(u^2+1)*(au+b)]

=int ((bu+a)du)/[(u^2+1)*(a^2+b^2)]-int (ab*du)/[(au+b)*(a^2+b^2)]

b/(2a^2+2b^2)*ln(u^2+1)+a/(a^2+b^2)*arctanu-b/(a^2+b^2)*ln(au+b)+C

b/(2a^2+2b^2)*ln[(tanx)^2+1]+a/(a^2+b^2)*arctan(tanx)-b/(a^2+b^2)*ln(atanx+b)+C

b/(2a^2+2b^2)*ln[(secx)^2]+a/(a^2+b^2)*x-b/(a^2+b^2)*ln(atanx+b)+C

b/(a^2+b^2)*ln(secx)+a/(a^2+b^2)*x-b/(a^2+b^2)*ln(atanx+b) +C

Sep 26, 2017

1/(a^2+b^2){ax-bln|(asinx+bcosx)|}+C.

Explanation:

Denote, int1/(a+bcotx)dx," by, "I." Then, "I=intsinx/(asinx+bcosx)dx.

Evibently, a^2+b^2ne0.

A useful technic to solve this type of integrals, is to decompose the

Nr. as, "Nr.="l*Dr.+m*d/dx(Dr.), where, l,m in RR....(star).

So, let, for some l,m in RR,

sinx=l(asinx+bcosx)+md/dx(asinx+bcosx)

:.sinx=l(asinx+bcosx)+m(acosx-bsinx), i.e.,

1sinx+0cosx=(la-mb)sinx+(lb+ma)cosx.

:. la-mb=1, &, lb+ma=0. Solving these for l,m; we get,

l=a/(a^2+b^2), m=-b/(a^2+b^2)...........(star')

Now, (star) rArr sinx/(asinx+bcosx)=l+{md/dx(asinx+bcosx)}/(asinx+bcosx).

:. I=int[l+{md/dx(asinx+bcosx)}/(asinx+bcosx)]dx,

=l*int1dx+m*int{(d/dx(asinx+bcosx))/(asinx+bcosx)}dx,

=lx+mln|(asinx+bcosx)|.

Finally, using (star'), we have,

I=a/(a^2+b^2)*x-b/(a^2+b^2)*ln|(asinx+bcosx)|, or,

I=1/(a^2+b^2){ax-bln|(asinx+bcosx)|}+C.

Foot Note :

Observe that, the above Solution is based on the valid

condition that a^2+b^2 ne0.

I hope that the Questioner will work out the Solution for

a=0 ( &, :., bne0), and, b=0; (ane0.)

Enjoy Maths.!