Denote, int1/(a+bcotx)dx," by, "I." Then, "I=intsinx/(asinx+bcosx)dx.
Evibently, a^2+b^2ne0.
A useful technic to solve this type of integrals, is to decompose the
Nr. as, "Nr.="l*Dr.+m*d/dx(Dr.), where, l,m in RR....(star).
So, let, for some l,m in RR,
sinx=l(asinx+bcosx)+md/dx(asinx+bcosx)
:.sinx=l(asinx+bcosx)+m(acosx-bsinx), i.e.,
1sinx+0cosx=(la-mb)sinx+(lb+ma)cosx.
:. la-mb=1, &, lb+ma=0. Solving these for l,m; we get,
l=a/(a^2+b^2), m=-b/(a^2+b^2)...........(star')
Now, (star) rArr sinx/(asinx+bcosx)=l+{md/dx(asinx+bcosx)}/(asinx+bcosx).
:. I=int[l+{md/dx(asinx+bcosx)}/(asinx+bcosx)]dx,
=l*int1dx+m*int{(d/dx(asinx+bcosx))/(asinx+bcosx)}dx,
=lx+mln|(asinx+bcosx)|.
Finally, using (star'), we have,
I=a/(a^2+b^2)*x-b/(a^2+b^2)*ln|(asinx+bcosx)|, or,
I=1/(a^2+b^2){ax-bln|(asinx+bcosx)|}+C.
Foot Note :
Observe that, the above Solution is based on the valid
condition that a^2+b^2 ne0.
I hope that the Questioner will work out the Solution for
a=0 ( &, :., bne0), and, b=0; (ane0.)
Enjoy Maths.!