int (sin2x*dx)/[p(cosx)^2+q(sinx)^2]
=int (2sinx*cosx*dx)/[p(cosx)^2+q(sinx)^2]
=int (2tanx*dx)/[q(tanx)^2+p]
=int (2tanx*[(tanx)^2+1]*dx)/([q(tanx)^2+p][(tanx)^2+1])
After using y=tanx and dy=[(tanx)^2+1]*dx transforms, this integral became
int (2y*dy)/[(y^2+1)*(qy^2+p)]
After using z=y^2 and dz=2y*dy transforms, it became
int (dz)/[(z+1)*(qz+p)]
Now, I decomposed integrand into basic fractions,
1/[(z+1)*(qz+p)]=A/(z+1)+B/(qz+p)
After expanding denominator,
A*(qz+p)+B*(z+1)=1
Setting z=-1, A*(p-q)=1, so A=-1/(q-p)
Setting z=-p/q, B*(q-p)/q=1, so B=q/(q-p)
Thus,
int (dz)/[(z+1)*(qz+p)]
=q/(q-p)int (dp)/(qz+p)-1/(q-p)int (dp)/(z+1)
=1/(q-p)ln(qz+p)-1/(q-p)ln(z+1)+C
=1/(q-p)ln(qy^2+p)-1/(q-p)ln(y^2+1)+C
=1/(q-p)ln(q(tanx)^2+p)-1/(q-p)ln((tanx)^2+1)+C
=1/(q-p)ln(q(tanx)^2+p)-1/(q-p)ln((secx)^2)+C
=1/(q-p)ln(p(cosx)^2+q(sinx)^2)+C