Integrate (sin2x)/("p"cos^2x+"q"sin^2x) ?

(sin2x)/("p"cos^2x+"q"sin^2x)

2 Answers
Mar 22, 2018

-1/(p-q) ln| p cos^2 x+q sin^2 x |+C

Explanation:

Use the trigonometric identities

cos^2 x = 1/2(1+cos 2x),
sin^2 x = 1/2(1-cos 2x)

to rewrite the denominator in the form

p cos^2 x+q sin^2 x = 1/2{p(1+cos 2x)+q(1-cos 2x)} = {p+q}/2+{p-q}/2 cos 2x

Substitute {p+q}/2+{p-q}/2 cos 2x = u. Then -(p-q) sin 2x = du Thus

int (sin2x)/("p"cos^2x+"q"sin^2x) dx = -1/(p-q) int du/u
qquad = -1/(p-q) ln u+C = -1/(p-q) ln| p cos^2 x+q sin^2 x |+C

Mar 22, 2018

1/(q-p)ln(p(cosx)^2+q(sinx)^2)+C

Explanation:

int (sin2x*dx)/[p(cosx)^2+q(sinx)^2]

=int (2sinx*cosx*dx)/[p(cosx)^2+q(sinx)^2]

=int (2tanx*dx)/[q(tanx)^2+p]

=int (2tanx*[(tanx)^2+1]*dx)/([q(tanx)^2+p][(tanx)^2+1])

After using y=tanx and dy=[(tanx)^2+1]*dx transforms, this integral became

int (2y*dy)/[(y^2+1)*(qy^2+p)]

After using z=y^2 and dz=2y*dy transforms, it became

int (dz)/[(z+1)*(qz+p)]

Now, I decomposed integrand into basic fractions,

1/[(z+1)*(qz+p)]=A/(z+1)+B/(qz+p)

After expanding denominator,

A*(qz+p)+B*(z+1)=1

Setting z=-1, A*(p-q)=1, so A=-1/(q-p)

Setting z=-p/q, B*(q-p)/q=1, so B=q/(q-p)

Thus,

int (dz)/[(z+1)*(qz+p)]

=q/(q-p)int (dp)/(qz+p)-1/(q-p)int (dp)/(z+1)

=1/(q-p)ln(qz+p)-1/(q-p)ln(z+1)+C

=1/(q-p)ln(qy^2+p)-1/(q-p)ln(y^2+1)+C

=1/(q-p)ln(q(tanx)^2+p)-1/(q-p)ln((tanx)^2+1)+C

=1/(q-p)ln(q(tanx)^2+p)-1/(q-p)ln((secx)^2)+C

=1/(q-p)ln(p(cosx)^2+q(sinx)^2)+C