Let f(x) = (1) / (1-3x) f(x)=11−3x and g(x) = (1) / (x^2) g(x)=1x2 how do you find f(g(x)?
1 Answer
Oct 23, 2015
Put
f(g(x)) = 1+3/(x^2-3)f(g(x))=1+3x2−3
Explanation:
f(g(x))f(g(x))
= 1/(1-3g(x))=11−3g(x)
= 1/(1-3(1/(x^2)))=11−3(1x2)
= x^2/(x^2-3)=x2x2−3
= (x^2-3+3)/(x^2-3)=x2−3+3x2−3
= 1+3/(x^2-3)=1+3x2−3
with restriction
The restriction is necessary because