Let f(x)=x+8f(x)=x+8 and g(x)=2x^2-128g(x)=2x2128, how do you find h(x)=(g(x))/(f(x))h(x)=g(x)f(x)?

1 Answer
Dec 21, 2017

2x-162x16

Explanation:

(g(x))/(f(x))g(x)f(x)

=(2x^2-128)/(x+8)=2x2128x+8

"factorise the numerator"factorise the numerator

2(x^2-64)larrcolor(blue)"common factor of 2"2(x264)common factor of 2

x^2-64" is a "color(blue)"difference of squares"x264 is a difference of squares

•color(white)(x)a^2-b^2=(a-b)(a+b)xa2b2=(ab)(a+b)

"here "a=x" and "b=8here a=x and b=8

rArrx^2-64=(x-8)(x+8)x264=(x8)(x+8)

rArr(2cancel((x+8))(x-8))/cancel((x+8))

rArrh(x)=2(x-8)=2x-16