Let j(x)=x^2j(x)=x2 and k(x)=x^3k(x)=x3, does k(j(x))=j(k(x))k(j(x))=j(k(x))?
1 Answer
Yes
Explanation:
More generally...
If
(x^m)^n = overbrace(x^m xx x^m xx ... xx x^m)^"n times"
color(white)((x^m)^n) = overbrace(overbrace((x xx x xx ... xx x))^"m times" xx overbrace((x xx x xx ... xx x))^"m times" xx ... xx overbrace((x xx x xx ... xx x))^"m times")^"n times"
color(white)((x^m)^n) = overbrace(x xx x xx ... xx x)^"mn times"
color(white)((x^m)^n) = x^(mn)
So in particular:
(x^m)^n = x^(mn) = x^(nm) = (x^n)^m
Footnote
-
Any number
x (Real or complex), withm, n positive integers. -
Any non-zero number
x (Real or complex), withm, n any integers. -
Any positive (Real) number
x , withm, n any numbers.
It does not hold in all cases.
For example:
-1 = (-1)^1 = (-1)^(3/2*2/3) != ((-1)^(3/2))^(2/3) = (-i)^(2/3) = 1/2-sqrt(3)/2i