Let s(x) = x ^2 + 2x + 3x and #t(x) = sqrt(x+4), how do you find sot(6)?

2 Answers
Nov 27, 2015

sot(6) = 10+5sqrt(10) = 5(2+sqrt(10))

Explanation:

Since s(color(blue)(x)) = color(blue)(x)^2+2color(blue)(x)+3color(blue)(x) = color(blue)(x)^2+5color(blue)(x)

sot(6) (also written s(color(blue)(t(6))))
color(white)("XXX")=color(blue)(t(6))^2+5*color(blue)(t(6))

And since t(color(red)(x)) =sqrt(color(red)(x)+4)
color(white)("XXX")t(color(red)(6)) = sqrt(color(red)(6)+4) = sqrt(10)

Therefore:
color(white)("XXX")sot(6)=s(t(6)) = (sqrt(10))^2+5*sqrt(10) = 10+5sqrt(10)

Nov 27, 2015

Assuming you meant: s(x)=x^2+2x+3 " and "t(x)=sqrt(x+4)
Find s@t(6)

color(blue)(s@t(6)=13+2sqrt(10))

Explanation:

Assumption: There is a typing error in the question and that it should be:

s(x)=x^2+2x+3 and t(x)=sqrt(x+4)

Find s@t(6)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

color(blue)(Step 1)

t(x) -> t(6) = sqrt(6+4) =sqrt(10)

color(blue)(Step2)

s(x)->s@t(6) =(sqrt(10))^2+2(sqrt(10))+3

s@t(6)=13+2sqrt(10)