Let y=[(x^(2x)(x-1)^3)/(3+5x)^4], how do you use logarithmic differentiation to find dy/dx?

1 Answer
Jan 12, 2017

dy/dx= (x^(2x)(x-1)^3)/(3+5x)^4{2 + 2lnx + 3/(x-1)-20/(3+5x)}

Explanation:

y=[(x^(2x)(x-1)^3)/(3+5x)^4]

Taking (natural) logs of both sides:

ln y=ln[(x^(2x)(x-1)^3)/(3+5x)^4]
\ \ \ \ \ \=ln \ x^(2x) + ln\ (x-1)^3 - ln \ (3+5x)^4
\ \ \ \ \ \=2xln \ x + 3ln\ (x-1) - 4ln \ (3+5x)

Differentiating the LHS implicitly and the RHS using the product rule gives:
1/y dy/dx \ = (2x)(1/x) + (2)(lnx) + 3/(x-1)-4*5/(3+5x)
\ \ \ \ \ \ \ \ \ \ = 2 + 2lnx + 3/(x-1)-20/(3+5x)
:. dy/dx= (x^(2x)(x-1)^3)/(3+5x)^4{2 + 2lnx + 3/(x-1)-20/(3+5x)}