Limit Value=?

enter image source here

1 Answer
Mar 6, 2018

(2)(2)

Explanation:

(sqrt(3x)-3)/(sqrt(2x-4)-sqrt2) =(sqrt(3x)-3)/(sqrt(2x-4)-sqrt2) ((sqrt(2x-4)+sqrt2)/(sqrt(2x-4)+sqrt2))= 3x32x42=3x32x42(2x4+22x4+2)=

=((sqrt(3x)-3)(sqrt(2x-4)+sqrt2))/(2x-4-2) =((sqrt(3x)-3)(sqrt(2x-4)+sqrt2))/(2x-6) =(3x3)(2x4+2)2x42=(3x3)(2x4+2)2x6

but

(sqrt(3x)-3)/(2x-6) = (sqrt3(sqrtx-sqrt3))/(2((sqrtx)^2-(sqrt3)^2)) = sqrt3/2 1/(sqrtx+sqrt3)3x32x6=3(x3)2((x)2(3)2)=321x+3

so

lim_(x->3)(sqrt(3x)-3)/(sqrt(2x-4)-sqrt2) =lim_(x->3)(sqrt3/2)(sqrt(2x-4)+sqrt2)/(sqrtx+sqrt3) = 1/sqrt2