P_1(1+r)^2 + P_2(1+r) = AP1(1+r)2+P2(1+r)=A for r?

1 Answer

r=(-P_2 \pm sqrt(P_2^2+4P_1A)) / (2P_1) -1r=P2±P22+4P1A2P11

Explanation:

Notice that if we subtract AA from both sides and substitute in RR for (1+r)(1+r), ew get something familiar:

P_1R^2+P_2R-A=0P1R2+P2RA=0

We can now use the quadratic formula:

R = (-b \pm sqrt(b^2-4ac)) / (2a) R=b±b24ac2a

R = (-P_2 \pm sqrt(P_2^2-4P_1(-A))) / (2(P_1)) R=P2±P224P1(A)2(P1)

R =r+1= (-P_2 \pm sqrt(P_2^2+4P_1A)) / (2P_1) R=r+1=P2±P22+4P1A2P1

:.r=(-P_2 \pm sqrt(P_2^2+4P_1A)) / (2P_1) -1