For ease of writing, let us subst.
(alpha+beta)/2=u, (beta+gamma)/2=v, &, (gamma+alpha)/2=w.
By Given, then, cotu+cotv+cotw=0.
:. cotu+cotv=-cotw.
:. cosu/sinu+cosv/sinv=-cosw/sinw.
:. (sinvcosu+sinucosv)/(sinusinv)=-cosw/sinw, or,
sin(u+v)/(sinusinv)=-cosw/sinw.
:. sin(u+v)sinw=-sinusinvcosw, or,
:.2sin(u+v)sinw={-2sinusinv}cosw.
:. -{cos(u+v+w)-cos(u+v-w)}={cos(u+v)-cos(u-v)}cosw.
:. color(red)(2cos(u+v-w))color(blue)(-2cos(u+v+w))=2cos(u+v)cosw-2cos(u-v)cosw,
={color(blue)(cos(u+v+w))+color(red)(cos(u+v-w))}-{color(green)(cos(u-v+w))+color(magenta)(cos(u-v-w))}.
:. color(red)(2cos(u+v-w))-color(red)(cos(u+v-w))+color(green)(cos(u-v+w))+color(magenta)(cos(u-v-w))
=color(blue)(cos(u+v+w))+color(blue)(2cos(u+v+w)), i.e.,
color(red)(cos(u+v-w))+color(green)(cos(u-v+w))+color(magenta)(cos(u-v-w))=color(blue)(3(cos(u+v+w)).
Here, (u+v-w)=(alpha+beta)/2+(beta+gamma)/2- (gamma+alpha)/2=beta,
u-v+w=(alpha+beta)/2-(beta+gamma)/2+(gamma+alpha)/2=alpha,
u-v-w=(alpha+beta)/2-(beta+gamma)/2-(gamma+alpha)/2=-gamma, and,
u+v+w=(alpha+beta)/2+(beta+gamma)/2+(gamma+alpha)/2=alpha+beta+gamma.
Accordingly, there follows the desired result :
cosbeta+cosalpha+cos(-gamma)=3cos(alpha+beta+gamma), or,
cosbeta+cosalpha+cosgamma=3cos(alpha+beta+gamma).
Feel & Spread the Joy of Maths.!