Please solve q.26 part one? If cot((alpha+beta)/2)+cot((beta+gamma)/2)+cot((gamma+alpha)/2)=0 **Rtp** cosalpha+costheta+cosgamma=3cos(alpha+beta+gamma)

enter image source here

2 Answers
Mar 13, 2018

Given

cot((alpha+beta)/2)+cot((beta+gamma)/2)+cot((gamma+alpha)/2)=0

=>cot((alpha+beta)/2)+cot((beta+gamma)/2)=-cot((gamma+alpha)/2)

Multiplying both sides by sin((alpha+beta)/2)sin((beta+gamma)/2) we get

=>cot((alpha+beta)/2)sin((alpha+beta)/2)sin((beta+gamma)/2)+cot((beta+gamma)/2)sin((alpha+beta)/2)sin((beta+gamma)/2)=-cot((gamma+alpha)/2)sin((alpha+beta)/2)sin((beta+gamma)/2)

=>cos((alpha+beta)/2)sin((beta+gamma)/2)+cos((beta+gamma)/2)sin((alpha+beta)/2)=-cot((gamma+alpha)/2)sin((alpha+beta)/2)sin((beta+gamma)/2)

=>sin((alpha+2beta+gamma)/2)=-(cos((gamma+alpha)/2))/sin((gamma+alpha)/2)sin((alpha+beta)/2)sin((beta+gamma)/2)

=>sin((alpha+2beta+gamma)/2)*sin((gamma+alpha)/2)=-cos((gamma+alpha)/2)sin((alpha+beta)/2)sin((beta+gamma)/2)

Similarly we get

sin((alpha+beta+2gamma)/2)*sin((alpha+beta)/2)=-cos((alpha+beta)/2)sin((gamma+alpha)/2)sin((beta+gamma)/2)

So adding we get

sin((alpha+2beta+gamma)/2)*sin((gamma+alpha)/2)+sin((alpha+beta+2gamma)/2)*sin((alpha+beta)/2)=-cos((gamma+alpha)/2)sin((alpha+beta)/2)sin((beta+gamma)/2)-cos((alpha+beta)/2)sin((gamma+alpha)/2)sin((beta+gamma)/2)

=>sin((alpha+2beta+gamma)/2)*sin((gamma+alpha)/2)+sin((alpha+beta+2gamma)/2)*sin((alpha+beta)/2)=-(cos((gamma+alpha)/2)sin((alpha+beta)/2)+cos((alpha+beta)/2)sin((gamma+alpha)/2))sin((beta+gamma)/2)

=>sin((alpha+2beta+gamma)/2)*sin((gamma+alpha)/2)+sin((alpha+beta+2gamma)/2)*sin((alpha+beta)/2)=-sin((2alpha+beta+gamma)/2)sin((beta+gamma)/2)

=>2sin((alpha+2beta+gamma)/2)sin((gamma+alpha)/2)+2sin((alpha+beta+2gamma)/2)sin((alpha+beta)/2)+2sin((2alpha+beta+gamma)/2)sin((beta+gamma)/2)=0

=>cosbeta-cos(alpha+beta+gamma)+cosgamma -cos(alpha+beta+gamma)+cos alpha -cos(alpha+beta+gamma)=0

=>cosalpha+costheta+cosgamma=3cos(alpha+beta+gamma)

Proved

Mar 27, 2018

Kindly go through a Proof in the Explanation.

Explanation:

For ease of writing, let us subst.

(alpha+beta)/2=u, (beta+gamma)/2=v, &, (gamma+alpha)/2=w.

By Given, then, cotu+cotv+cotw=0.

:. cotu+cotv=-cotw.

:. cosu/sinu+cosv/sinv=-cosw/sinw.

:. (sinvcosu+sinucosv)/(sinusinv)=-cosw/sinw, or,

sin(u+v)/(sinusinv)=-cosw/sinw.

:. sin(u+v)sinw=-sinusinvcosw, or,

:.2sin(u+v)sinw={-2sinusinv}cosw.

:. -{cos(u+v+w)-cos(u+v-w)}={cos(u+v)-cos(u-v)}cosw.

:. color(red)(2cos(u+v-w))color(blue)(-2cos(u+v+w))=2cos(u+v)cosw-2cos(u-v)cosw,

={color(blue)(cos(u+v+w))+color(red)(cos(u+v-w))}-{color(green)(cos(u-v+w))+color(magenta)(cos(u-v-w))}.

:. color(red)(2cos(u+v-w))-color(red)(cos(u+v-w))+color(green)(cos(u-v+w))+color(magenta)(cos(u-v-w))
=color(blue)(cos(u+v+w))+color(blue)(2cos(u+v+w)), i.e.,

color(red)(cos(u+v-w))+color(green)(cos(u-v+w))+color(magenta)(cos(u-v-w))=color(blue)(3(cos(u+v+w)).

Here, (u+v-w)=(alpha+beta)/2+(beta+gamma)/2- (gamma+alpha)/2=beta,

u-v+w=(alpha+beta)/2-(beta+gamma)/2+(gamma+alpha)/2=alpha,

u-v-w=(alpha+beta)/2-(beta+gamma)/2-(gamma+alpha)/2=-gamma, and,

u+v+w=(alpha+beta)/2+(beta+gamma)/2+(gamma+alpha)/2=alpha+beta+gamma.

Accordingly, there follows the desired result :

cosbeta+cosalpha+cos(-gamma)=3cos(alpha+beta+gamma), or,

cosbeta+cosalpha+cosgamma=3cos(alpha+beta+gamma).

Feel & Spread the Joy of Maths.!