Please solve this question ?

A particle's position vector as function of time ,in polar coordinates, is given by vecr = 2k cos( (ωt)/2)hat r & where dotθ = ω is constant. Find the ratio a_r/a_θ for this particle ,where a_theta and a_r are components of acceleration in polar co-ordinates ?

1 Answer
Dec 13, 2017

See below.

Explanation:

Making hat r = (costheta,sintheta) and f(t)=2kcos((omega t)/2)

we have

(d hat r)/(dt) = dot theta(-sintheta,costheta) = dot theta hat tau

with hat tau = (-sintheta,costheta)

Now

(d^2 hat r)/(d^2t) = d/(dt)(dot theta hat tau) = ddot theta hat tau + dot theta (d hat tau)/(dt)

but (d hat tau)/(dt) = -dot theta (costheta,sintheta) = -dot theta hat r so

(d^2 hat r)/(d^2t) = ddot theta hat tau - (dot theta)^2 hat r

and then

(d vec r)/(dt) = dot( f)(t) hat r + dot theta f(t)hat tau and

(d^2 vec r)/(d^2t) =ddot(f)(t) hat r + dot theta dot(f)(t) hat tau +ddot(theta)f(t) hat tau+dot theta dot(f)(t) hat tau -(dot theta)^2f(t) hat r = (ddot(f)(t)-(dot theta)^2f(t) )hat r+(2dot theta dot(f)(t)+ddot(theta)f(t))hat tau

but

dot(f)(t) = -komegasin((omega t)/2) and
ddot(f)(t) = -1/2k omega^2 cos((omega t)/2)

and

dot theta = omega and also ddot theta = 0

Here hat tau can also be called hat theta so

a_r = ddot(f)(t)-(dot theta)^2f(t)
a_theta = 2dot theta dot(f)(t)+ddot(theta)f(t)

The final substitutions are left to the reader.