Prove cos^2x tanx / sinx = cosx?
1 Answer
Mar 28, 2018
We seek to prove that:
cos^2x tanx/sinx -= cos xcos2xtanxsinx≡cosx
Consider the LHS of the expression:
LHS -= cos^2x tanx/sinx LHS≡cos2xtanxsinx
\ \ \ \ \ \ \ \ = cos x * cosx * ((sinx/cosx)) / sin x
\ \ \ \ \ \ \ \ = cos x * cosx * (sinx/cosx) * 1/ sin x
After cancelling we get:
LHS = cos x * cancel(cosx) * (cancel(sinx)/cancel(cosx)) * 1/ cancel(sin x)
\ \ \ \ \ \ \ \ = cos x
\ \ \ \ \ \ \ \ = RHS \ \ \ QED