Prove cos^2x tanx / sinx = cosx?

1 Answer
Mar 28, 2018

We seek to prove that:

cos^2x tanx/sinx -= cos xcos2xtanxsinxcosx

Consider the LHS of the expression:

LHS -= cos^2x tanx/sinx LHScos2xtanxsinx

\ \ \ \ \ \ \ \ = cos x * cosx * ((sinx/cosx)) / sin x

\ \ \ \ \ \ \ \ = cos x * cosx * (sinx/cosx) * 1/ sin x

After cancelling we get:

LHS = cos x * cancel(cosx) * (cancel(sinx)/cancel(cosx)) * 1/ cancel(sin x)

\ \ \ \ \ \ \ \ = cos x

\ \ \ \ \ \ \ \ = RHS \ \ \ QED