Prove? cotx = sin5x+sin7x / cos5x-cos7x

2 Answers
Mar 21, 2018

See the proof below

Explanation:

Reminder

sina+sinb=2sin((a+b)/2)cos((a-b)/2)sina+sinb=2sin(a+b2)cos(ab2)

cosa-cosb=-2sin((a+b)/2)sin((a-b)/2)cosacosb=2sin(a+b2)sin(ab2)

Therefore,

RHS=(sin5x+sin7x)/(cos5x-cos7x)RHS=sin5x+sin7xcos5xcos7x

=(2sin((5x+7x)/2)cos((5x-7x)/2))/(-2sin((5x+7x)/2)sin((5x-7x)/2))=2sin(5x+7x2)cos(5x7x2)2sin(5x+7x2)sin(5x7x2)

=(cos((5x-7x)/2))/(-sin((5x-7x)/2))=cos(5x7x2)sin(5x7x2)

=cosx/(-(-sinx))=cosx(sinx)

=cotx=cotx

=LHS=LHS

QEDQED

Mar 21, 2018

Please see below.

Explanation:

WE have,
color(red)((1)sinC+sinD=2sin((C+D)/2)cos((C-D)/2)(1)sinC+sinD=2sin(C+D2)cos(CD2)

color(red)((2)cosC-cosD=-2sin((C+D)/2)sin((C-D)/2)(2)cosCcosD=2sin(C+D2)sin(CD2)
Here,
cotx=(sin5x+sin7x)/(cos5x-cos7x)cotx=sin5x+sin7xcos5xcos7x

RHS=(sin5x+sin7x)/(cos5x-cos7x)RHS=sin5x+sin7xcos5xcos7x

Using (1) and (2),

=(cancel(2)cancelsin((5x+7x)/2)cos((5x-7x)/2))/(-cancel2cancelsin((5x+7x)/2)sin((5x-7x)/2))

=-cos((5x-7x)/2)/sin((5x-7x)/2)

=-cos((-2x)/2)/sin((-2x)/2)

=-cos(-x)/sin(-x)

=-cosx/(-sinx

=cotx