Prove it: sqrt((1-cosx)/(1+cosx))+sqrt((1+cosx)/(1-cosx))=2/abs(sinx)?

sqrt((1-cosx)/(1+cosx))+sqrt((1+cosx)/(1-cosx))=2/abs(sinx)

1 Answer
Mar 16, 2017

Proof below
using conjugates and trigonometric version of Pythagorean Theorem.

Explanation:

Part 1
sqrt((1-cosx)/(1+cosx))

color(white)("XXX")=sqrt(1-cosx)/sqrt(1+cosx)

color(white)("XXX")=sqrt((1-cosx))/sqrt(1+cosx) * sqrt(1-cosx)/sqrt(1-cosx)

color(white)("XXX")=(1-cosx)/sqrt(1-cos^2x)

Part 2
Similarly
sqrt((1+cosx)/(1-cosx)

color(white)("XXX")=(1+cosx)/sqrt(1-cos^2x)

Part 3: Combining the terms
sqrt((1-cosx)/(1+cosx))+sqrt((1+cosx)/(1-cosx)

color(white)("XXX")=(1-cosx)/sqrt(1-cos^2x)+(1+cosx)/sqrt(1-cos^2x)

color(white)("XXX")=2/sqrt(1-cos^2x)

color(white)("XXXXXX")and since sin^2x+cos^2x=1 (based on the Pythagorean Theorem)
color(white)("XXXXXXXXX")sin^2x=1-cos^2x

color(white)("XXXXXXXXX")sqrt(1-cos^2x)=abs(sinx)

sqrt((1-cosx)/(1+cosx))+sqrt((1+cosx)/(1-cosx))=2/sqrt(1-cos^2x)=2/abs(sinx)