Prove it: tan^5x=((1/(1-sinx)^2)-(1/(1+sinx)^2))/((1/(1-cosx)^2)-(1/(1+cosx)^2)tan5x=(1(1−sinx)2)−(1(1+sinx)2)(1(1−cosx)2)−(1(1+cosx)2)?
2 Answers
To prove
RHS
Proved
This is one of those proofs that is easier to work from right to left. Start with:
((1/(1-sinx)^2)-(1/(1+sinx)^2))/((1/(1-cosx)^2)-(1/(1+cosx)^2)(1(1−sinx)2)−(1(1+sinx)2)(1(1−cosx)2)−(1(1+cosx)2)
Multiply numerator and denominator of the embedded fractions by the "conjugates" (e.g.
= (((1+sinx)/((1-sin^2x)(1-sinx)))-((1-sinx)/((1-sin^2x)(1+sinx))))/(((1+cosx)/((1-cos^2x)(1-cosx)))-((1-cosx)/((1-cos^2x)(1+cosx)))=(1+sinx(1−sin2x)(1−sinx))−(1−sinx(1−sin2x)(1+sinx))(1+cosx(1−cos2x)(1−cosx))−(1−cosx(1−cos2x)(1+cosx))
Repeat the previous step to simplify the denominator in the embedded fractions further:
= (((1+sinx)^2/((1-sin^2x)^2))-((1-sinx)^2/((1-sin^2x)^2)))/(((1+cosx)^2/((1-cos^2x)^2))-((1-cosx)^2/((1-cos^2x)^2))=((1+sinx)2(1−sin2x)2)−((1−sinx)2(1−sin2x)2)((1+cosx)2(1−cos2x)2)−((1−cosx)2(1−cos2x)2)
Use the identities
= (((1+sinx)^2/(cos^4x))-((1-sinx)^2/(cos^4x)))/(((1+cosx)^2/(sin^4x))-((1-cosx)^2/(sin^4x))=((1+sinx)2cos4x)−((1−sinx)2cos4x)((1+cosx)2sin4x)−((1−cosx)2sin4x)
Combine fractions and flip to multiply the reciprocals:
= (((1+sinx)^2-(1-sinx)^2)/(cos^4x))/(((1+cosx)^2-(1-cosx)^2)/(sin^4x))=(1+sinx)2−(1−sinx)2cos4x(1+cosx)2−(1−cosx)2sin4x
= ((1+sinx)^2-(1-sinx)^2)/(cos^4x)*(sin^4x)/((1+cosx)^2-(1-cosx)^2)=(1+sinx)2−(1−sinx)2cos4x⋅sin4x(1+cosx)2−(1−cosx)2
Expand the squared terms:
= (cancel(1)+2sinx+cancel(sin^2x)-(cancel(1)-2sinx+cancel(sin^2x)))/(cos^4x)*(sin^4x)/(cancel(1)+2cosx+cancel(cos^2x)-(cancel(1)-2cosx+cancel(cos^2x)))
= (cancel(4)sinx)/(cos^4x)*(sin^4x)/(cancel(4)cosx)
= color(blue)(tan^5x)