Prove that? sqrt(2+sqrt(2+sqrt(2+2cos8theta2+2+2+2cos8θ = 2costheta2cosθ

2 Answers
Sep 19, 2017

sqrt(2+sqrt(2+sqrt(2+2cos8theta)))=2costheta2+2+2+2cos8θ=2cosθ

Explanation:

As cos2A=2cos^2A-1cos2A=2cos2A1, we have

cos8theta=2cos^2(4theta)-1cos8θ=2cos2(4θ)1, cos4theta=2cos^2(2theta)-1cos4θ=2cos2(2θ)1 and cos2theta=2cos^2theta-1cos2θ=2cos2θ1

i.e. 1+cos8theta=2cos^2(4theta)1+cos8θ=2cos2(4θ), 1+cos4theta=2cos^2(2theta)1+cos4θ=2cos2(2θ) and 1+cos2theta=2cos^2theta1+cos2θ=2cos2θ

Hence sqrt(2+sqrt(2+sqrt(2+2cos8theta)))2+2+2+2cos8θ

= sqrt(2+sqrt(2+sqrt(2(1+cos8theta))))2+2+2(1+cos8θ)

= sqrt(2+sqrt(2+sqrt(2xx2cos^2(4theta))))2+2+2×2cos2(4θ)

= sqrt(2+sqrt(2+2cos(4theta)))2+2+2cos(4θ)

= sqrt(2+sqrt(2(1+cos(4theta)))2+2(1+cos(4θ))

= sqrt(2+sqrt(2xx2cos^2(2theta)))2+2×2cos2(2θ)

= sqrt(2+2cos2theta)2+2cos2θ

= sqrt(2(1+cos2theta))2(1+cos2θ)

= sqrt(2xx2cos^2theta)2×2cos2θ

= 2costheta2cosθ

Sep 19, 2017

The identity is false in general, but true for theta in [-pi/8, pi/8]θ[π8,π8]

Explanation:

The given identity does not hold in general.

For example, with theta = pi/6θ=π6 we find:

sqrt(2+sqrt(2+sqrt(2+2cos8 theta)))2+2+2+2cos8θ

=sqrt(2+sqrt(2+sqrt(2+2cos((4pi)/3))))=  2+ 2+2+2cos(4π3)

=sqrt(2+sqrt(2+sqrt(2+2(-1/2))))=  2+ 2+2+2(12)

=sqrt(2+sqrt(2+sqrt(1)))=2+2+1

=sqrt(2+sqrt(3)) ~~ 1.932=2+31.932

But:

2 cos(theta) = 2 cos(pi/6) = 2 (sqrt(3)/2) = sqrt(3) ~~ 1.7322cos(θ)=2cos(π6)=2(32)=31.732

What is true?

A double angle formula for coscos can be written:

cos 2theta = 2 cos^2 theta - 1cos2θ=2cos2θ1

So:

cos 8 theta = 2 cos^2 4theta - 1cos8θ=2cos24θ1

and:

2+2cos 8 theta = 2+2(2 cos^2 4theta - 1) = 4 cos^2 4 theta2+2cos8θ=2+2(2cos24θ1)=4cos24θ

So:

sqrt(2+2cos 8 theta) = sqrt(4 cos^2 4 theta) = abs(2 cos 4theta)2+2cos8θ=4cos24θ=|2cos4θ|

So if cos 4 theta >= 0cos4θ0 then:

sqrt(2+2cos 8 theta) = 2 cos 4 theta2+2cos8θ=2cos4θ

Then:

2+2cos 4 theta = 2+2(2cos^2 2 theta - 1) = 4 cos^2 2 theta2+2cos4θ=2+2(2cos22θ1)=4cos22θ

So:

sqrt(2+2cos 4 theta) = sqrt(4 cos^2 2 theta) = abs(2cos 2 theta)2+2cos4θ=4cos22θ=|2cos2θ|

So if cos 2 theta >= 0cos2θ0 then:

sqrt(2+2cos 4 theta) = 2cos 2 theta2+2cos4θ=2cos2θ

Then:

2+2cos 2 theta = 2+2(2cos^2 theta - 1) = 4cos^2 theta2+2cos2θ=2+2(2cos2θ1)=4cos2θ

So:

sqrt(2+2cos 2 theta) = sqrt(4 cos^2 theta) = abs(2 cos theta)2+2cos2θ=4cos2θ=|2cosθ|

So if cos theta >= 0cosθ0 then:

sqrt(2+2cos 2 theta) = 2 cos theta2+2cos2θ=2cosθ

So we have shown that provided all of:

  • cos 4 theta >= 0cos4θ0

  • cos 2 theta >= 0cos2θ0

  • cos theta >= 0cosθ0

then:

sqrt(2+sqrt(2+sqrt(2+2cos 8 theta))) = 2 cos theta2+2+2+2cos8θ=2cosθ

These conditions will be satisfied for theta in [-pi/8, pi/8]θ[π8,π8]