Prove that? sqrt(2+sqrt(2+sqrt(2+2cos8theta√2+√2+√2+2cos8θ = 2costheta2cosθ
2 Answers
Explanation:
As
i.e.
Hence
=
=
=
=
=
=
=
=
=
The identity is false in general, but true for
Explanation:
The given identity does not hold in general.
For example, with
sqrt(2+sqrt(2+sqrt(2+2cos8 theta)))√2+√2+√2+2cos8θ
=sqrt(2+sqrt(2+sqrt(2+2cos((4pi)/3))))= ⎷2+ ⎷2+√2+2cos(4π3)
=sqrt(2+sqrt(2+sqrt(2+2(-1/2))))= ⎷2+ ⎷2+√2+2(−12)
=sqrt(2+sqrt(2+sqrt(1)))=√2+√2+√1
=sqrt(2+sqrt(3)) ~~ 1.932=√2+√3≈1.932
But:
2 cos(theta) = 2 cos(pi/6) = 2 (sqrt(3)/2) = sqrt(3) ~~ 1.7322cos(θ)=2cos(π6)=2(√32)=√3≈1.732
What is true?
A double angle formula for
cos 2theta = 2 cos^2 theta - 1cos2θ=2cos2θ−1
So:
cos 8 theta = 2 cos^2 4theta - 1cos8θ=2cos24θ−1
and:
2+2cos 8 theta = 2+2(2 cos^2 4theta - 1) = 4 cos^2 4 theta2+2cos8θ=2+2(2cos24θ−1)=4cos24θ
So:
sqrt(2+2cos 8 theta) = sqrt(4 cos^2 4 theta) = abs(2 cos 4theta)√2+2cos8θ=√4cos24θ=|2cos4θ|
So if
sqrt(2+2cos 8 theta) = 2 cos 4 theta√2+2cos8θ=2cos4θ
Then:
2+2cos 4 theta = 2+2(2cos^2 2 theta - 1) = 4 cos^2 2 theta2+2cos4θ=2+2(2cos22θ−1)=4cos22θ
So:
sqrt(2+2cos 4 theta) = sqrt(4 cos^2 2 theta) = abs(2cos 2 theta)√2+2cos4θ=√4cos22θ=|2cos2θ|
So if
sqrt(2+2cos 4 theta) = 2cos 2 theta√2+2cos4θ=2cos2θ
Then:
2+2cos 2 theta = 2+2(2cos^2 theta - 1) = 4cos^2 theta2+2cos2θ=2+2(2cos2θ−1)=4cos2θ
So:
sqrt(2+2cos 2 theta) = sqrt(4 cos^2 theta) = abs(2 cos theta)√2+2cos2θ=√4cos2θ=|2cosθ|
So if
sqrt(2+2cos 2 theta) = 2 cos theta√2+2cos2θ=2cosθ
So we have shown that provided all of:
-
cos 4 theta >= 0cos4θ≥0 -
cos 2 theta >= 0cos2θ≥0 -
cos theta >= 0cosθ≥0
then:
sqrt(2+sqrt(2+sqrt(2+2cos 8 theta))) = 2 cos theta√2+√2+√2+2cos8θ=2cosθ
These conditions will be satisfied for