Prove that CotA/2-3cot3A/2=4sinA/1+2cosA?

1 Answer
Feb 11, 2018

Please refer to a Proof in the Explanation.

Explanation:

We know that, tan3x=(3tanx-tan^3x)/(1-3tan^2x)tan3x=3tanxtan3x13tan2x.

:. cot3x=1/(tan3x)=(1-3tan^2x)/(3tanx-tan^3x).

Let, tan(A/2)=t. Then,

cot(A/2)-3cot(3A/2)=1/t-(3(1-3t^2))/(3t-t^3),

=1/t-(3(1-3t^2))/(t(3-t^2),

={(3-t^2)-(3-9t^2)}/(t(3-t^2),

=(8t)/(3-t^2),

={(8t)/(1+t^2)}-:{(3-t^2)/(1+t^2)},

={(8t)/(1+t^2)}-:{{(1+t^2)+(2-2t^2)}/(1+t^2)},

={(8t)/(1+t^2)}-:{(1+t^2)/(1+t^2)+(2(1-t^2))/(1+t^2)},

={4((2t)/(1+t^2))}-:{1+2((1-t^2)/(1+t^2))}.

Since, sinA=(2tan(A/2))/(1+tan^2(A/2)), and, cos2y=(1-tan^2(A/2))/(1+tan^2(A/2)),

cot(A/2)-3cot(3A/2)=4sinA-:(1+2cosA), as desired!