We know that, tan3x=(3tanx-tan^3x)/(1-3tan^2x)tan3x=3tanx−tan3x1−3tan2x.
:. cot3x=1/(tan3x)=(1-3tan^2x)/(3tanx-tan^3x).
Let, tan(A/2)=t. Then,
cot(A/2)-3cot(3A/2)=1/t-(3(1-3t^2))/(3t-t^3),
=1/t-(3(1-3t^2))/(t(3-t^2),
={(3-t^2)-(3-9t^2)}/(t(3-t^2),
=(8t)/(3-t^2),
={(8t)/(1+t^2)}-:{(3-t^2)/(1+t^2)},
={(8t)/(1+t^2)}-:{{(1+t^2)+(2-2t^2)}/(1+t^2)},
={(8t)/(1+t^2)}-:{(1+t^2)/(1+t^2)+(2(1-t^2))/(1+t^2)},
={4((2t)/(1+t^2))}-:{1+2((1-t^2)/(1+t^2))}.
Since, sinA=(2tan(A/2))/(1+tan^2(A/2)), and, cos2y=(1-tan^2(A/2))/(1+tan^2(A/2)),
cot(A/2)-3cot(3A/2)=4sinA-:(1+2cosA), as desired!