We know that,
tan3theta=(3tantheta-tan^3theta)/(1-3tan^2theta).
:. cot3theta=1/(tan3theta)=(1-3tan^2theta)/(3tantheta-tan^3theta)
:.cot((3A)/2)={1-3tan^2(A/2)}/{3tan(A/2)-tan^3(A/2)}.
Letting tan(A/2)=t, we have,
cot(A/2)-3cot((3A)/2),
=1/t-3{(1-3t^2)/(3t-t^3)},
1/t-{3(1-3t^2)}/{t(3-t^2)},
={(3-t^2)-3(1-3t^2)}/{t(3-t^2)},
=(8t^cancel(2))/{cancel(t)(3-t^2)},
=(8t)/{(1+t^2)+2(1-t^2)}
={4*(2t)/(1+t^2)}/{(1+t^2)/(1+t^2)+2*(1-t^2)/(1+t^2)}.
Note that, (2t)/(1+t^2)={2tan(A/2)}/(1+tan^2(A/2))=sinA, and
(1-t^2)/(1+t^2)=cosA.
rArrcot(A/2)-3cot((3A)/2)=(4sinA)/(1+2cosA)," as desired!"