PROVE THAT: Data: #a,b,c,x,y,z > 0# #1/x+1/y+1/z=1#?

We must prove:
#abc<a^x/x+b^y/z+c^z/z#

1 Answer
Aug 28, 2017

See below.

Explanation:

With #x_k > 0#, from #sum_(k=1)^n x_k ge (prod_(k=1)^n x_k)^(1/n)# we can derive

#mu_1 x_1+mu_2 x_2+mu_3x_3 ge x_1^(mu_1) x_2^(mu_2) x_3^(mu_3)#

with #mu_1+mu_2+mu_3=1# now choosing

#{(x_1=a^x),(x_2=b^y),(x_3=c^z),(mu_1=1/x),(mu_2=1/y),(mu_3=1/z):}#

we get

#a^x/x+b^y/y+c^z/z ge a b c#