Prove that: (is true for any positive x,y):? #x^x*y^y>=((x+y)/2)^(x+y)#

#x^x*y^y>=((x+y)/2)^(x+y)#

1 Answer
Feb 27, 2018

See below.

Explanation:

Consider #f(x) = x ln x#

This function has a convex hypograph because

#f''(x) = 1/x > 0#

so in this case

#f((x+y)/2) le 1/2(f(x)+f(y))# or

#((x+y)/2)ln((x+y)/2) le 1/2( x ln x + y ln y)# or

#((x+y)/2)^((x+y)/2) le (x^x y^y)^(1/2)#

and finally squaring both sides

#((x+y)/2)^(x+y) le x^x y^y#