Prove that: (is true for any positive x,y):? x^x*y^y>=((x+y)/2)^(x+y)xxyy(x+y2)x+y

x^x*y^y>=((x+y)/2)^(x+y)xxyy(x+y2)x+y

1 Answer
Feb 27, 2018

See below.

Explanation:

Consider f(x) = x ln xf(x)=xlnx

This function has a convex hypograph because

f''(x) = 1/x > 0

so in this case

f((x+y)/2) le 1/2(f(x)+f(y)) or

((x+y)/2)ln((x+y)/2) le 1/2( x ln x + y ln y) or

((x+y)/2)^((x+y)/2) le (x^x y^y)^(1/2)

and finally squaring both sides

((x+y)/2)^(x+y) le x^x y^y