Prove that: #(s-a_1)^2 + (s-a_2)^2 +cdots+ (s-a_n)^2 =a_1^2 +a_2^2+cdots+a_n^2# when #a_1^2 +a_2^2+cdots+a_n^2 = n/{2s}#?
1 Answer
The given identity is false, but if:
#a_1+a_2+...+a_n = n/2 s#
then:
#(s-a_1)^2+(s-a_2)^2+...+(s-a_n)^2 = a_1^2+a_2^2+...+a_n^2#
Explanation:
Consider the case
Then:
#a_1^2 = (1/2)^2 = 1/4 = 1/(2*2) = n/(2s)#
#(s-a_1)^2 = (2-1/2)^2 = (3/2)^2 = 9/4 != 1/4 = a_1^2#
So something is not quite right with the question as stands.
Bonus
Let's try to wo##rk out the correct condition.
Working back from the desired result:
#(s-a_1)^2+(s-a_2)^2+...+(s-a_n)^2 = a_1^2+a_2^2+...+a_n^2#
Multiplying out the left hand side, we have:
#a_1^2+a_2^2+...+a_n^2-2s(a_1+a_2+...+a_n)+ns^2 = a_1^2+a_2^2+...+a_n^2#
Subtract
#-2s(a_1+a_2+...+a_n)+ns^2 = 0#
Add
#ns^2 = 2s(a_1+a_2+...+a_n)#
Divide both sides by
#n/2 s = a_1+a_2+...+a_n#
Note that all of the above steps are reversible, so if:
#a_1+a_2+...+a_n = n/2 s#
then:
#(s-a_1)^2+(s-a_2)^2+...+(s-a_n)^2 = a_1^2+a_2^2+...+a_n^2#