Prove the following?

Prove int_1^2((e^x-lnx)/x^2-1)dx>021(exlnxx21)dx>0

1 Answer
May 22, 2018

Check below.

Explanation:

int_1^2((e^x-lnx)/x^2-1)dx>021(exlnxx21)dx>0 <=>

int_1^2((e^x-lnx)/x^2)dx>int_1^2(1)dx21(exlnxx2)dx>21(1)dx <=>

int_1^2((e^x-lnx)/x^2)dx>[x]_1^221(exlnxx2)dx>[x]21 <=> <=>

int_1^2((e^x-lnx)/x^2)dx>2-121(exlnxx2)dx>21 <=>

int_1^2((e^x-lnx)/x^2)dx>121(exlnxx2)dx>1

We need to prove that

int_1^2((e^x-lnx)/x^2)dx>121(exlnxx2)dx>1

Consider a function f(x)=e^x-lnxf(x)=exlnx , x>0x>0

From the graph of C_fCf we can notice that for x>0x>0

we have e^x-lnx>2exlnx>2

Explanation:

f(x)=e^x-lnxf(x)=exlnx , xxin[1/2,1][12,1]

f'(x)=e^x-1/x

f'(1/2)=sqrte-2<0

f'(1)=e-1>0

According to Bolzano (Intermediate Value) Theorem we have f'(x_0)=0 <=> e^(x_0)-1/x_0=0 <=>

e^(x_0)=1/x_0 <=> x_0=-lnx_0

enter image source here

The vertical distance is between e^x and lnx is minimum when f(x_0)=e^(x_0)-lnx_0=x_0+1/x_0

We need to show that f(x)>2 , AAx>0

f(x)>2 <=> x_0+1/x_0>2 <=>

x_0^2-2x_0+1>0 <=> (x_0-1)^2>0 -> true for x>0

graph{e^x-lnx [-6.96, 7.09, -1.6, 5.42]}

(e^x-lnx)/x^2>2/x^2

int_1^2((e^x-lnx)/x^2)dx>int_1^2(2/x^2)dx <=>

int_1^2((e^x-lnx)/x^2)dx>[-2/x]_1^2 <=>

int_1^2((e^x-lnx)/x^2)dx>-1+2 <=>

int_1^2((e^x-lnx)/x^2)dx>1 <=>

int_1^2((e^x-lnx)/x^2-1)dx>0