Prove the identity #(1/sinx - 1/tanx)^2 -= (1-cosx)/(1+cosx).# ?
Prove the identity #(1/sinx - 1/tanx)^2 -= (1-cosx)/(1+cosx).#
Prove the identity
1 Answer
Mar 13, 2018
I would start with the left hand side, by rewriting in terms of sine and cosine.
LHS:
#(1/sinx - 1/(sinx/cosx))^2#
#(1/sinx - cosx/sinx)^2#
#((1 - cosx)/sinx)^2#
#(1 -cosx)^2/sin^2x#
Recall that
#sin^2x +cos^2x = 1 -> sin^2x= 1- cos^2x# .
#(1 - cosx)^2/(1 - cos^2x)#
Now do a little factoring.
#((1 - cosx)(1 - cosx))/((1 + cosx)(1 - cosx))#
#(1 - cosx)/(1 + cosx)#
We now see that LHS = RHS, therefore we've proven this identity.
Hopefully this helps!