Prove the identity #(1/sinx - 1/tanx)^2 -= (1-cosx)/(1+cosx).# ?

Prove the identity #(1/sinx - 1/tanx)^2 -= (1-cosx)/(1+cosx).#

1 Answer
Mar 13, 2018

I would start with the left hand side, by rewriting in terms of sine and cosine.

LHS:

#(1/sinx - 1/(sinx/cosx))^2#

#(1/sinx - cosx/sinx)^2#

#((1 - cosx)/sinx)^2#

#(1 -cosx)^2/sin^2x#

Recall that

#sin^2x +cos^2x = 1 -> sin^2x= 1- cos^2x#.

#(1 - cosx)^2/(1 - cos^2x)#

Now do a little factoring.

#((1 - cosx)(1 - cosx))/((1 + cosx)(1 - cosx))#

#(1 - cosx)/(1 + cosx)#

We now see that LHS = RHS, therefore we've proven this identity.

Hopefully this helps!