Prove the identity of cos(3x + 3y) + cos(3x − 3y) = 2 cos 3x cos 3ycos(3x+3y)+cos(3x3y)=2cos3xcos3y?

1 Answer
Dec 4, 2016

using identities cos(A+B)=cosAcosB-sinAsinBcos(A+B)=cosAcosBsinAsinB

cos(A-B)=cosAcosB+sinAsinBcos(AB)=cosAcosB+sinAsinB weget

LHS=cos(3x + 3y) + cos(3x − 3y) LHS=cos(3x+3y)+cos(3x3y)

=cos3xcos3y-cancel(sin3xsin3y)+cos3xcos3y+cancel(sin3xsin3y)

=2cos3xcos3y=RHS

Proved