Prove the identity of cos(3x + 3y) + cos(3x − 3y) = 2 cos 3x cos 3ycos(3x+3y)+cos(3x−3y)=2cos3xcos3y? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer P dilip_k Dec 4, 2016 using identities cos(A+B)=cosAcosB-sinAsinBcos(A+B)=cosAcosB−sinAsinB cos(A-B)=cosAcosB+sinAsinBcos(A−B)=cosAcosB+sinAsinB weget LHS=cos(3x + 3y) + cos(3x − 3y) LHS=cos(3x+3y)+cos(3x−3y) =cos3xcos3y-cancel(sin3xsin3y)+cos3xcos3y+cancel(sin3xsin3y) =2cos3xcos3y=RHS Proved Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove \csc \theta \times \tan \theta = \sec \theta? How do you prove (1-\cos^2 x)(1+\cot^2 x) = 1? How do you show that 2 \sin x \cos x = \sin 2x? is true for (5pi)/6? How do you prove that sec xcot x = csc x? How do you prove that cos 2x(1 + tan 2x) = 1? How do you prove that (2sinx)/[secx(cos4x-sin4x)]=tan2x? How do you verify the identity: -cotx =(sin3x+sinx)/(cos3x-cosx)? How do you prove that (tanx+cosx)/(1+sinx)=secx? How do you prove the identity (sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)? See all questions in Proving Identities Impact of this question 2322 views around the world You can reuse this answer Creative Commons License