Prove the identity sin theta/ (1-cos theta) - 1/sin theta -= 1/tan theta ?
1 Answer
May 7, 2018
We seek to prove that:
sin theta/ (1-cos theta) - 1/sin theta -= 1/tan theta
Consider the LHS:
LHS = sin theta/ (1-cos theta) - 1/sin theta
\ \ \ \ \ \ \ \ = ( sin^2 theta - (1-cos theta)) / ((1-cos theta)(sin theta))
\ \ \ \ \ \ \ \ = ( 1-cos^2 theta - 1+cos theta) / ((1-cos theta)(sin theta))
\ \ \ \ \ \ \ \ = ( cos theta- cos^2 theta) / ((1-cos theta)(sin theta))
\ \ \ \ \ \ \ \ = ( cos theta(1- cos theta)) / ((1-cos theta)(sin theta))
\ \ \ \ \ \ \ \ = ( cos theta) / (sin theta)
\ \ \ \ \ \ \ \ = cot theta
\ \ \ \ \ \ \ \ = 1/tan theta
\ \ \ \ \ \ \ \ = LHS \ \ \ \ QED