Prove the identity sin theta/ (1-cos theta) - 1/sin theta -= 1/tan theta ?

1 Answer
May 7, 2018

We seek to prove that:

sin theta/ (1-cos theta) - 1/sin theta -= 1/tan theta

Consider the LHS:

LHS = sin theta/ (1-cos theta) - 1/sin theta

\ \ \ \ \ \ \ \ = ( sin^2 theta - (1-cos theta)) / ((1-cos theta)(sin theta))

\ \ \ \ \ \ \ \ = ( 1-cos^2 theta - 1+cos theta) / ((1-cos theta)(sin theta))

\ \ \ \ \ \ \ \ = ( cos theta- cos^2 theta) / ((1-cos theta)(sin theta))

\ \ \ \ \ \ \ \ = ( cos theta(1- cos theta)) / ((1-cos theta)(sin theta))

\ \ \ \ \ \ \ \ = ( cos theta) / (sin theta)

\ \ \ \ \ \ \ \ = cot theta

\ \ \ \ \ \ \ \ = 1/tan theta

\ \ \ \ \ \ \ \ = LHS \ \ \ \ QED