Prove the identity tan^2x-sin^2x is same as (tan^2x)(sin^2x)?

Prove the identity tan2xsin2xis same as
(tan2x)(sin2x)?

2 Answers
Dec 7, 2017

tan2(x)sin2(x)=tan2(x)sin2(x)

Explanation:

Assuming tan2(x)sin2(x)=tan2(x)sin2(x), start off by rewriting tan2(x) in to its sin(x) and cos(x) components.

sin2(x)cos2(x)sin2(x)

Next find a common denominator (LCD: cos2(x)1)

sin2(x)cos2(x)(11)sin2(x)cos2(x)cos2(x)sin2(x)cos2(x)sin2(x)cos2(x)cos2(x)

Combine in to a single fraction and factor out a sin2(x).

sin2(x)sin2(x)cos2(x)cos2(x)sin2(x)sin2(x)cos2(x)

Finally just rewrite

sin2(x)sin2(x)cos2(x)sin2(x)tan2(x)

Dec 7, 2017

Please refer to a Proof given in the Explanation.

Explanation:

We have,

tan2xsin2x,

=sin2xcos2xsin2x,

=sin2x(1cos2x1),

=sin2x{1cos2xcos2x},

=sin2x{sin2xcos2x},

=sin2xtan2x.

Hence, the Proof.