Prove/verify the identities: tan(x+(3pi)/4) = (tanx-1)/(1+tanx)?

Thanks in advance

2 Answers
Apr 6, 2018

LHS=tan(x+(3pi)/4)

=(tanx+tan((3pi)/4))/(1-tanxtan((3pi)/4))

=(tanx+tan(pi-pi/4))/(1-tanxtan(pi-pi/4))

=(tanx-tan(pi/4))/(1-tanx(-tan(pi/4))

=(tanx-1)/(1+tanx xx1)

= (tanx-1)/(1+tanx)=RHS

Apr 6, 2018

tan(x+(3pi)/4)

let x=A and (3pi)/4 = B

=>tan (A+B)

by the identity,
color(red)(tan (A+B) = (tanA+ tanB)/(1-tanAtanB)

therefore,

tan(x+(3pi)/4) = (tanx+ tan((3pi)/4))/(1-tanxtan((3pi)/4)

=> (tanx+ (-1))/(1-tanx(-1)) color(white)(dddd ["as " color(red)(tan((3pi)/4) = -1)]

=>(tanx-1)/(1+tanx)