Proving an identity and solving an equation?
(i) Prove the identity #1/costheta# #-# #costheta/(1 + sintheta) \equiv tantheta#
(ii) Solve the equation #1/costheta# #-# #costheta/(1 + sintheta) + 2 = 0# for #0# degrees #<= theta <= 360# degrees.
(i) Prove the identity
(ii) Solve the equation
2 Answers
Explanation:
#"consider the left side"#
#1/costheta-(costheta)/(1+sintheta)larr" express as single fraction"#
#=(1+sintheta-cos^2theta)/(costheta(1+sintheta))#
#=(1+sintheta-(1-sin^2theta))/(costheta(1+sintheta))#
#=(sinthetacancel((1+sintheta)))/(costhetacancel((1+sintheta)))#
#=sintheta/costheta=tantheta=" right side "rArr" proved"#
#"for "(ii)" we now have"#
#tantheta+2=0#
#rArrtantheta=-2#
#tantheta" is negative in second and fourth quadrants"#
#rArrtheta=tan^-1(2)=63.43^@larrcolor(red)" related acute angle"#
#rArrtheta=(180-63.43)^@=116.57^@#
#"or "theta=(360-63.43)^@=296.57^@#
#rArrtheta=116.57^@,296.57^@to0<=theta<=360#