Show that #|c|<1# ?

Given #f# continuous , #f:RR->RR#
If #f(x)!=0# for #x##in##(-oo,c)uu(c,+oo)# and

#f(1)f(-1)<0#

then show that #|c|<1#

1 Answer
Jan 18, 2018

Solved.

#f# is continuous in #RR# and so #[-1,1]subeRR# .

  • #f(1)f(-1)<0#

According to Bolzano Theorem (generalization)

#EE x_0##in##(-1,1): f(x_0)=0#

Supposed #|c|>=1# #<=># #c>=1# or #c<=-1#

  • If #c>=1# then #f(x)!=0# if #x##in##(-oo,c)uu(c,+oo)#

However, #f(x_0)=0# with #x_0##in##(-1,1)# #=># #-1 <# #x_0# #<1<=c# #=># #x_0##in##(-oo,c)#

CONTRADICTION!

  • If #c<=-1# then #f(x)!=0# if #x##in##(-oo,c)uu(c,+oo)#

However, #f(x_0)=0# with #x_0##in##(-1,1)# #=>#

#c<=-1# #<# #x_0<1# #=># #x_0##in##(c,+oo)#

CONTRADICTION!

Therefore,

#|c|<1#