Show that lim x->a (x^3/8-a^3/8)/(x^5/3-a^5/3)?

1 Answer
Feb 3, 2018

lim _(x->a) (x^3/8-a^3/8)/(x^5/3-a^5/3)=(9) /(40a^(2))

Explanation:

lim _(x->a) (x^3/8-a^3/8)/(x^5/3-a^5/3)

As we can easily recognize that this is 0/0 we'll modify the fraction

((x^3-a^3)*3)/((x^5-a^5 )*8)

Apply the factoring rule

(cancel(x -a)(a^2+ax+x^2)*3)/(8cancel(x-a)(x^4+x^3a+ x^2a^2+xa^3+a^4)

Plug in the value a

((a^2+aa+a^2)*3)/(8(a^4+a^3a+ a^2a^2+aa^3+a^4)

((3a^2)*3)/(8(2a^4+2a^3a^1+ a^2a^2)

(9a^2) /(8(2a^4+2a^4+ a^4)

(9a^2) /(8(5a^4)

(9a^2) /(40a^4)

= (9) /(40a^(4-2))

= (9) /(40a^(2))

lim _(x->a) (x^3/8-a^3/8)/(x^5/3-a^5/3)=(9) /(40a^(2))