Show that lim_(x to +oo)f'(x)=0 ?

Given f differentiable in RR with f(x)!=0 AAxinRR. If lim_(x to +oo)f(x) exists then show that lim_(x to +oo)f'(x)=0

1 Answer
Jan 25, 2018

See below.

Explanation:

Solved it.

lim_(xto+oo)f(x)inRR

Supposed lim_(xto+oo)f(x)=λ

then lim_(xto+oo)f(x)=lim_(xto+oo)(e^xf(x))/e^x

We have ((+-oo)/(+oo)) and f is differentiable in RR so applying Rules De L'Hospital:

lim_(xto+oo)(e^xf(x))/e^x=

lim_(xto+oo)(e^xf(x)+e^xf'(x))/e^x=

lim_(xto+oo)((e^xf(x))/e^x+(e^xf'(x))/e^x)=

lim_(xto+oo)[f(x)+f'(x)]

  • h(x)=f(x)+f'(x) with lim_(xto+oo)h(x)=λ

Thus, f'(x)=h(x)-f(x)

Therefore, lim_(xto+oo)f'(x)=lim_(xto+oo)[h(x)-f(x)]

=λ-λ=0

As a result,

lim_(xto+oo)f'(x)=0