Show that ln(1+x) < x-(x^2)/(2(1+x)), AA x>0?

3 Answers
Apr 14, 2017

See explanation below

Explanation:

Simplify the expression at the second member:

f(x) = x-x^2/(2(1+x)) = (2x(1+x)-x^2)/(2(1+x))= (2x+2x^2-x^2)/(2(1+x)) =(2x+x^2)/(2(1+x))

We can further simplify adding and subtracting 1 to the numerator:

f(x)=(1+2x+x^2-1)/(2(1+x)) = ((1+x)^2 -1)/(2(1+x)) = (1+x)/2 -1/(2(1+x))

Consider now:

(df)/dx = 1/2+1/2 1/(1+x)^2

d/dx ln(1+x) = 1/(1+x)

We have:

f(x)-ln(1+x) = f(0)+ln(1+0)+ int_0^x g(t)dt = 1/2-1/2+0+int_0^x g(t)dt = int_0^x g(t)dt

where g(x) = (df)/dx -d/dx ln(1+x)

so:

g(x) = 1/2 +1/2 1/(1+x)^2 -1/(1+x)

g(x) =((1+x)^2+1+2(1+x))/(2(1+x)^2)

g(x) =(1+2x +x^2+1+2+2x)/(2(1+x)^2)

g(x) = (x^2+4x+4)/(2(1+x)^2)

g(x) = (x+2)^2/(2(1+x)^2)

Clearly g(x) >0 for every x and then for x>0:

int_0^x g(t)dt > 0

so:

f(x)-ln(1+x) > 0

f(x) > ln(1+x)

Apr 14, 2017

See below.

Explanation:

Calling f(x)=x-log_e(x+1)+x^2/(2(x+1)) we have

f(0) = 0

To demonstrate that f(x) gt 0 for x > 0

we will show that f(0) is a minimum point. So we will determine the stationary points.

(df)/(dx) = (4 x + 3 x^2)/(2 (1 + x)^2) = 0

solving we get at x = -4/3 and x = 0

qualifying the stationary points we get

(d^2f)/(dx^2) = (x+2)/(x+1)^3 assuming the values

((x,(d^2f)/(dx^2),"type" ),(-4/3,-18,"maximum"),(0,2,"minimum"))

so concluding, x=0 is a minimum of f(x) so

for x > 0 we have f(x) > 0 and then

log_e(x+1) < x+ x^2/(2 (x + 1))

Apr 14, 2017

See the Proof given in the Explanation.

Explanation:

Define fun. f, by, f(x)=x-x^2/(2(1+x))-ln(1+x), x >0.

We have, x^2/(1+x)={(x^2-1)+1}/(1+x)=(x^2-1)/(1+x)+1/(1+x)=x-1+1/(1+x).

:. f(x)=x-1/2{x-1+1/(1+x)}-ln(1+x),

=x/2+1/2-1/(2(1+x))-ln(1+x), i.e.,

f(x)=(x+1)/2-1/(2(1+x))-ln(1+x), x>0.

:. f'(x)=1/2-1/2{-1/(1+x)^2}-1/(1+x),

=1/2+1/(2(1+x)^2)-1/(1+x),

={(1+x)^2+1-2(1+x)}/(2(1+x)^2),

rArr f'(x)=x^2/(2(1+x)^2) (x>0).

Clearly, f'(x)>0, which means that, f" is "uarr AA x >0.

:. x > 0 rArr f(x) > f(0)=0, i.e., f(x) > 0.

rArr x-x^2/(2(1+x))-ln(1+x) > 0, AA x > 0" or, equivalently,"

ln(1+x) < x-x^2/(2(1+x)), x > 0.

#Enjoy Maths.!