Show that sum x/2^x = 2x2x=2 summation running 0 to infinity ?

2 Answers
Jul 25, 2017

sum_(n=0)^(\infty) n/2^n = 2n=0n2n=2.

Explanation:

Suppose {f_n}{fn} and {g_n}{gn} are two sequences. Then,

sum_(n=0)^N f_n (g_(n+1)-g_(n)) = f_(N+1)g_(N+1)-f_0g_0-sum_(n=0)^(N)g_(n+1)(f_(n+1)-f_(n))Nn=0fn(gn+1gn)=fN+1gN+1f0g0Nn=0gn+1(fn+1fn).

This can be proved by investigating
sum_(n=0)^N f_n(g_(n+1)-g_(n))+g_(n+1)(f_(n+1)-f_(n))Nn=0fn(gn+1gn)+gn+1(fn+1fn).

Expanding gives,

sum_(n=0)^N f_ng_(n+1)-f_ng_(n)+g_(n+1)f_(n+1)-g_(n+1)f_(n)Nn=0fngn+1fngn+gn+1fn+1gn+1fn,
sum_(n=0)^N f_(n+1)g_(n+1)-f_ng_nNn=0fn+1gn+1fngn.

This is now a telescoping where all the terms cancel apart from the first and the last, giving

sum_(n=0)^N f_(n+1)g_(n+1)-f_(n)g_(n)=f_(N+1)g_(N+1)-f_(0)g_(0)Nn=0fn+1gn+1fngn=fN+1gN+1f0g0.

Substituting,

sum_(n=0)^N f_n(g_(n+1)-g_(n))+g_(n+1)(f_(n+1)-f_(n)) = f_(N+1)g_(N+1)-f_(0)g_(0)Nn=0fn(gn+1gn)+gn+1(fn+1fn)=fN+1gN+1f0g0,
sum_(n=0)^N f_n (g_(n+1)-g_(n)) = f_(N+1)g_(N+1)-f_0g_0-sum_(n=0)^(N)g_(n+1)(f_(n+1)-f_(n))Nn=0fn(gn+1gn)=fN+1gN+1f0g0Nn=0gn+1(fn+1fn) as required.

Then, let f_(n)=nfn=n and let g_(n+1)-g_(n)=2^(-n)gn+1gn=2n. We see that if g_(n)=k2^(-n)gn=k2n then

g_(n+1)-g_(n)=k(2^(-(n+1))-2^(-n))gn+1gn=k(2(n+1)2n),
g_(n+1)-g_(n)=k(1/2*2^(-n)-2^(-n))gn+1gn=k(122n2n),
g_(n+1)-g_(n)=-(k)/2 2^(-n)gn+1gn=k22n.

Then let k=-2k=2 giving g_(n+1)-g_(n)=2^(-n)gn+1gn=2n for g_(n)=-2*2^(-n)gn=22n

We conclude f_(n)=nfn=n, g(n)=-2*2^(-n)g(n)=22n.

Substituting,

sum_(n=0)^N n/2^n = -2(N+1)2^(-(N+1))+2sum_(n=0)^(N)2^(-(n+1))(n+1-n)Nn=0n2n=2(N+1)2(N+1)+2Nn=02(n+1)(n+1n),
sum_(n=0)^N n/2^n = -2(N+1)2^(-(N+1))+sum_(n=0)^(N)2^(-n)Nn=0n2n=2(N+1)2(N+1)+Nn=02n,

By the sum of a geometric series,

sum_(n=0)^N n/2^n = -2(N+1)2^(-(N+1))+(1-2^(-(N+1)))/(1-1/2)Nn=0n2n=2(N+1)2(N+1)+12(N+1)112,
sum_(n=0)^N n/2^n = 2-2*2^(-(N+1))((N+1)+1)Nn=0n2n=222(N+1)((N+1)+1),
sum_(n=0)^N n/2^n = 2 - (N+2)2^(-N)Nn=0n2n=2(N+2)2N

As N -> +\inftyN+ (N+2)2^(-N) -> 0(N+2)2N0.

Then

sum_(n=0)^(\infty) n/2^n = 2n=0n2n=2.

Jul 25, 2017

See below.

Explanation:

Defining S_n = sum_(k=0)^n x^kSn=nk=0xk or

S_n = (x^(n+1)-1)/(x-1)Sn=xn+11x1

for abs x < 1|x|<1 we have

S_oo = lim_(n->oo)S_n = -1/(x-1)

now

sum_(k=0)^n k x^k = x ((dS_n)/(dx)) and

sum_(k=0)^oo kx^k = x ((dS_oo)/(dx)) = x(d/dx)(1/(1-x)) = x/(x-1)^2

and now making x = 1/2 we obtain

sum_(k=0)^oo kx^k = 2