Show that |z+1|+|1+z+z^2|+|1+z^3|>=1|z+1|+1+z+z2+1+z31 ?

If zzinCC , show that |z+1|+|1+z+z^2|+|1+z^3|>=1

1 Answer
May 11, 2018
  • For |z|>=1

|z+1|+|z^2+z+1|>=|(z^2+z+1)-(z+1)|=|z^2|=|z|^2>=1

  • For |z|<1

|z+1|+|z^2+z+1|>=|z||z+1|+|z^2+z+1|=

|z(z+1)|+|z^2+z+1|=|z^2+z|+|z^2+z+1|>=|(z^2+z+1)-(z^2+z)|=1

Hence, |z+1|+|1+z+z^2|>=1 , zinCC

and

|z+1|+|1+z+z^2|+|1+z^3|>=|1+z|+|1+z+z^2|>=1

,
"=" , z=-1vvz=e^((2k+1)iπ) , kinZZ