#30+114*(n-1)+81(n-1)(n-2)+17(n-1)(n-2)(n-3)+(n-1)(n-2)(n-3)(n-4)#
After using #y=n-1# transform, this polynomial became
#30+114y+81y(y-1)+17y(y-1)(y-2)+y(y-1)(y-2)(y-3)#
=#30+114y+81y^2-81y+17*(y^3-3y^2+2y)+(y^2-y)*(y^2-5y+6)#
=#30+81y^2+33y+17y^3-51y^2+34y+y^4-6y^3+11y^2-6y#
=#y^4+11y^3+41y^2+61y+30#
=#(n-1)^4+11(n-1)^3+41(n-1)^2+61*(n-1)+30#
=#n^4-4n^3+6n^2-4n+1+11n^3-33n^2+33n-11+41n^2-82n+41+61n-61+30#
=#n^4+7n^3+14n^2+8n#
=#n*(n^3+7n^2+14n+8)#
=#n*(n^2+n+6n^2+6n+8n+8)#
=#n*(n+1)*(n^2+6n+8)#
=#n(n+1)(n+2)(n+4)#