GIVEN
#sin^4x/x+cos^4x/y=1/(x+y)#
#=>((x+y)/x)sin^4x+((x+y)/y)cos^4x=1#
#=>(1+y/x)sin^4x+(1+x/y)cos^4x=1#
#=>(sin^2x+cos^2x)^2-2sin^2xcos^2x+(y/x)sin^4x+(x/y)cos^4x=1#
#=>1-2sin^2xcos^2x+(y/x)sin^4x+(x/y)cos^4x=1#
#=>-2sin^2xcos^2x+(y/x)sin^4x+(x/y)cos^4x=0#
#=>(sqrt(y/x)sin^2x-sqrt(x/y)cos^2x)^2=0#
#=>sqrt(y/x)sin^2x=sqrt(x/y)cos^2x#
#=>sin^2x/x=cos^2x/y#
By addendo
#=>sin^2x/x=cos^2x/y=(sin^2x+cos^2x)/(x+y)=1/(x+y)#
#=>sin^2x=x/(x+y)#
And
#=>cos^2x=y/(x+y)#
Now
#sin^12x/x^5+cos^12x/y^5#
#=(sin^2x)^6/x^5+(cos^2x)^6/y^5#
#=(x/(x+y))^6/x^5+(y/(x+y))^6/y^5#
#=x/(x+y)^6+y/(x+y)^6#
#=1/(x+y)^5#