if sinx+cosx=asinx+cosx=a find sin^3(x)+cos^3(x)sin3(x)+cos3(x) in terms of aa?

Sinx+cosx=asinx+cosx=a

sin^3(x)+cos^3(x)=?sin3(x)+cos3(x)=?

2 Answers
Jul 17, 2017

sin^3x+cos^3x = 1/2a(3-a^2) sin3x+cos3x=12a(3a2)

Explanation:

Consider (sinx+cosx)^2(sinx+cosx)2:

(sinx+cosx)^2 =sin^2x+2sinxcosx+cos^2x (sinx+cosx)2=sin2x+2sinxcosx+cos2x

Using sinx+cosx=asinx+cosx=a in the above we have;

a^2 =sin^2x+cos^2x+2sinxcosx a2=sin2x+cos2x+2sinxcosx
\ \ \ =1+2sinxcosx
=> sinxcosx = (a^2-1)/2

Consider now, (sinx+cosx)^3:

(sinx+cosx)^3 =sin^3x+3sin^2xcosx+3sinxcos^2x+cos^3x
" " =sin^3x+cos^3x+3sinxcosx(sinx+cosx)

Again, using sinx+cosx=a we have:

a^3 =sin^3x+cos^3x+3asinxcosx
\ \ \ =sin^3x+cos^3x+3a * (a^2-1)/2

=> sin^3x+cos^3x = a^3 - 3a * (a^2-1)/2
" " = (2a^3 - 3a^3+3a)/2
" " = (3a-a^3)/2
" " = 1/2a(3-a^2)

Jul 19, 2017

sin^3x+cos^3x

=(sinx+cosx)(sin^2x+cos^2x-sinx cosx)

=a(1-1/2xx2sinx cosx)

=a(1-1/2xx((sinx +cosx)^2-1)

=a(1-1/2xx(a^2-1))

=a/2(2-a^2+1)

=a/2(3-a^2)