if sinx+cosx=asinx+cosx=a find sin^3(x)+cos^3(x)sin3(x)+cos3(x) in terms of aa?
Sinx+cosx=asinx+cosx=a
sin^3(x)+cos^3(x)=?sin3(x)+cos3(x)=?
2 Answers
sin^3x+cos^3x = 1/2a(3-a^2) sin3x+cos3x=12a(3−a2)
Explanation:
Consider
(sinx+cosx)^2 =sin^2x+2sinxcosx+cos^2x (sinx+cosx)2=sin2x+2sinxcosx+cos2x
Using
a^2 =sin^2x+cos^2x+2sinxcosx a2=sin2x+cos2x+2sinxcosx
\ \ \ =1+2sinxcosx
=> sinxcosx = (a^2-1)/2
Consider now,
(sinx+cosx)^3 =sin^3x+3sin^2xcosx+3sinxcos^2x+cos^3x
" " =sin^3x+cos^3x+3sinxcosx(sinx+cosx)
Again, using
a^3 =sin^3x+cos^3x+3asinxcosx
\ \ \ =sin^3x+cos^3x+3a * (a^2-1)/2
=> sin^3x+cos^3x = a^3 - 3a * (a^2-1)/2
" " = (2a^3 - 3a^3+3a)/2
" " = (3a-a^3)/2
" " = 1/2a(3-a^2)