The quadratic formula states:
For color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0, the values of x which are the solutions to the equation are given by:
x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))
Substituting:
color(red)(3) for color(red)(a)
color(blue)(4) for color(blue)(b)
color(green)(10) for color(green)(c) gives:
x = (-color(blue)(4) +- sqrt(color(blue)(4)^2 - (4 * color(red)(3) * color(green)(10))))/(2 * color(red)(3))
x = (-color(blue)(4) +- sqrt(16 - 120))/6
x = (-color(blue)(4) +- sqrt(-104))/6
x = (-color(blue)(4) +- sqrt(4 xx -26))/6
x = (-color(blue)(4) +- sqrt(4)sqrt(-26))/6
x = (-color(blue)(4) +- 2sqrt(-26))/6