We know that, tan2x=(2tanx)/(1-tan^2x)=(2t)/(1-t^2), where, t=tanx.
:. 2tanx-tan2x+2a=1-tan2xtan^2x,
rArr 2t-(2t)/(1-t^2)+2a=1-(2t)/(1-t^2)*t^2.
Multiplying by (1-t^2), we get,
2t(1-t^2)-2t+2a(1-t^2)=(1-t^2)-2t^3.
:. cancel(2t-2t^3-2t)+2a(1-t^2)=1-t^2cancel(-2t^3), or,
2a(1-t^2)=(1-t^2).
:. 2a=(1-t^2)/(1-t^2)=1, if t^2ne1.
:. a=1/2, if t^2ne1.
Now, t^2=1 rArr t=tanx=+-1=tan(pmpi/4),
rArr x=npi+-pi/4, n in ZZ, but, then, tan2x becomes undefined.
:. t=tanxnepm1.
:. a=1/2.