Solve for x, given 3 log^2 (x-1) - 10 log (x-1) = -3?

1 Answer
Oct 23, 2017

See explanation.

Explanation:

We can solve this equation by frst substituting log(x-1) as a new variable:

t=log(x-1)

The equation turns into:

3t^2-10t+3=0

To solve the equation we use the quadratic formula:

Delta=b^2-4ac

Delta=(-10)^2-4*3*3

Delta=100-36=64

sqrt(Delta)=8

t_1=(-b-sqrt(Delta))/(2a)=(10-8)/6=1/3

t_2=(-b+sqrt(Delta))/(2a)=(10+8)/6=3

Now we have to calculate the values of x corresponding with the calculated values of t:

1/3=log(x_1-1)=>x_1-1=root(3)(10)=>x_1=1+root(3)(10)

3=log(x_2-1)=>x_2-1=1000=>x_2=1001

Answer:

The equation has 2 solutions:

x_1=1+root(3)(10)

x_2=1001