Solve #lim_(xrarrprop) (sqrt(x+sqrt(x+sqrt(x)))-sqrtx)#?
2 Answers
Explanation:
First note that:
#lim_(x->oo) sqrt(x+sqrt(x))/x = lim_(x->oo) sqrt(1/x^2)sqrt(x+sqrt(x))#
#color(white)(lim_(x->oo) sqrt(x+sqrt(x))/x) = lim_(x->oo) sqrt(1/x+1/(xsqrt(x)))#
#color(white)(lim_(x->oo) sqrt(x+sqrt(x))/x) = 0#
So:
#lim_(x->oo) (sqrt(x+sqrt(x+sqrt(x)))-sqrt(x))#
#= lim_(x->oo) ((sqrt(x+sqrt(x+sqrt(x)))-sqrt(x))(sqrt(x+sqrt(x+sqrt(x)))+sqrt(x)))/(sqrt(x+sqrt(x+sqrt(x)))+sqrt(x))#
#= lim_(x->oo) ((color(red)(cancel(color(black)(x)))+sqrt(x+sqrt(x)))-color(red)(cancel(color(black)(x))))/(sqrt(x+sqrt(x+sqrt(x)))+sqrt(x))#
#= lim_(x->oo) (sqrt(x+sqrt(x)))/(sqrt(x+sqrt(x+sqrt(x)))+sqrt(x))#
#= lim_(x->oo) (color(red)(cancel(color(black)(sqrt(x))))sqrt(1+1/sqrt(x)))/(color(red)(cancel(color(black)(sqrt(x))))(sqrt(1+sqrt(x+sqrt(x))/x)+1))#
#= lim_(x->oo) (sqrt(1+1/sqrt(x)))/(sqrt(1+sqrt(x+sqrt(x))/x)+1)#
#= (sqrt(1+0))/(sqrt(1+0)+1)#
#= 1/2#
Explanation:
Now