Solve the differential equation xyy' +xyy'= y^2 +1?
1 Answer
Mar 18, 2017
y = +-sqrt(Bx -1)
Explanation:
We have:
xyy' +xyy'= y^2 +1
:. 2xyy' = y^2 +1
:. y/(y^2 +1 )y' = 1/(2x)
This is a First Order separable DE, so we can separate the variables to get;
int \ y/(y^2 +1 ) \ dy = int \ 1/(2x) \ dx
The RHS is trivial and for the LHS we can use a substitution:
Let
Substituting we get
int \ (1/2)/(u) \ du = int \ 1/(2x) \ dx
We can now integrate to get:
1/2ln|u| = 1/2 ln |x| + A
:. ln|u| = ln |x| + 2A
:. ln|u| = ln |x| + lnB (say)
:. ln|u| = ln B|x|
:. u = Bx
:. y^2+1 = Bx
:. y^2 = Bx -1
:. y = +-sqrt(Bx -1)